
1 INTRODUCTION 

1.1 Theoretical background 

The main theoretical background of Structural Dy-
namics, also designated by Vibration Engineering, 
has been established more than a century ago. Since 
the second half of the 20th Century that numerical 
methods to solve the dynamical equations of motion 
(1) have been developed with notorious contribu-
tions from Newmark (Newmark 1969), Wilson 
(Wilson 1962), Bathe (Bathe 1982) amongst many 
others. 
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In equation (1) the entities M, C, K and F(x,y,z,t) 
represent the global mass matrix, the global damping 
matrix, the global stiffness matrix and the global 
load vector, respectively. 
The kinematical entities u , u  (t) and u(t) are the ac-
celeration, the velocity and the displacement vectors, 
respectively. 

The main drive for the development of these tech-
niques has been, nevertheless, attaining a better un-
derstanding of the structural behaviour of civil engi-
neering structures when excited by ground borne 
vibrations such as the ones induced by earthquakes 
and the movement of underground trains. 

Even in the case of bridge structures, the emphasis 
has been put mainly either on the dynamic behaviour 
of footbridges to pedestrian loading (in order to 
achieve acceptable levels of comfort) or in the struc-
tural response of decks and sub-structures to earth-
quakes to guarantee safety in terms of Ultimate Lim-
it States. 

When it comes to the dynamic analysis of High-
way of Railway bridges, most of the available as-
sessment and design codes still adopt a simplified 
approach when determining the additional defor-
mations and internal forces due to moving loads, 
commonly referred to as dynamic amplification fac-
tors (DAF). 

The exponential growth in computational power 
the world has witnessed in the last decade have final-
ly made feasible for a structural engineer to conduct 
the numerical integration of the differential equa-
tions of motion that derive from modelling life size 
bridge structures, when undergoing moving vehicu-
lar loads that vary both in time, F(t), and also in 
space, F(x,y,z,t). 

2  METHODS TO DETERMINE THE DYNAMIC 
RESPONSE OF A BRIDGE TO MOVING 
VEHICULAR LOADS  

There are fundamentally two main ways to approach 
the problem of determining the response of a bridge 
to a moving vehicular loading: 

 Frequency domain analysis 

 Time domain analysis 

2.1 Frequency Domain Analysis 

In the frequency domain analysis, the dynamic action 
is decomposed into a number of periodic functions, 
using Fourier analysis. 

The response of the structure is therefore obtained 
from the sum of the contribution of each fundamen-
tal frequency. 
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If kinematics are re-written as 
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The dynamical equations of motion become: 
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The system of equations (6) can be solved for each 
frequency, and the corresponding amplitudes, 
U(), thus be obtained. 

Another interesting application of the frequency 
domain approach (of substantial practical interest) is 
the estimation of natural frequencies from a known 
acceleration time history, often obtained experimen-
tally. This can be achieved by using the properties of 
the discrete Fourier transform (7) and inverse Fouri-
er transform (8) (Figure 1). 
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Figure 1. Frequency domain & Time domain 

 

2.2 Time Domain Analysis 

The time domain response can be evaluated employ-
ing three numerical techniques: 

 Modal superposition analysis 

 Implicit integration 

 Explicit integration 

2.2.1 Modal superposition analysis 

In the modal superposition analysis, the system of 
differential equations of motion (1) is converted into 

a set of independent differential equations using the 
orthogonality properties of the mass and stiffness 
matrices in relation to the vibration modes. This de-
composition if achieved by solving the following ei-
genvalue and eigenvector problem: 
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The solution of (9) will provide the structure’s natu-

ral frequencies(eigenvalues), n, and the correspond-

ing vibration modes, n (eigenvectors). The follow-

ing generalised variables can be determined from the 

knowledge of the vibration modes, n, as shown be-

low 
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The response of each modal coordinate, Yn(t), is ob-

tained from the solution of the corresponding decou-

pled equation 
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This is usually achieved using a numerical integra-
tion method such as the Duhamel integral. 

 
The response of the structure is finally obtained by 
superimposing the response of each modal coordi-
nate, Yn(t), as follows: 
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The main advantage of the modal analysis is the fact 
that, although in theory we would need to consider 
all the vibration modes of the structure (NModes = 
NDOF), for most bridges the contribution of only a 
small number of frequencies (modes) is usually 
enough to obtain an accurate response. 
 
Although the determination of the natural frequen-
cies and vibration modes (Eigenvalues and Eigen 
vectors) of a bridge structure usually involves sub-
stantial computational effort, once completed, allows 
for very a quick computation of the time domain re-
sponse, as long as only reasonably small number of 
vibration modes are required. 

2.2.2 Implicit and Explicit time integration 

When integrating the equations of motion, we can 

distinguish two main approaches, the explicit and the 

implicit integration schemes. 



The explicit methods use the differential equation at 

time “t” to predict the solution at time “t+t”. This 

way the response of the system at “t+t” is “explicit-

ly” obtained from the response at “t”. 

This procedure has the big advantage of not in-

volving the solution of a set of linear equations for 

each time step. The weakness of this strategy lays on 

the fact the size of the time step,t, that guarantees 

the stability of the solution has to be very small. 

Nevertheless, when solving real problems that in-

volve a vast number of degrees of freedom this tech-

nique is often the only one that can be employed. 

The implicit methods attempt to satisfy the differ-

ential equation at time “t” from the solution of “t-

t”. This method implies the solution of a set of lin-

ear equations for each time step which can, in some 

cases, be a major disadvantage. However, solvers 

that take advantage of the 21st Century multi-core 

processor technology tend to improve computational 

efficiency considerably. Finally, it should be empha-

sized here that considerably larger time steps might 

be used, being some implicit methods unconditional-

ly stable. 

Newmark (Newmark 1969) has introduced a fami-

ly of integration methods based on the following 

equations: 
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Depending on the  and parameters adopted we 

can have the following sub-families of implicit and 

explicit methods. 
 

Table 1.  Time integration methods. 

  Time integration methods 

1/2 1/4 
Average 

acceleration 

Unconditionally 

stable 

Implicit 

1/2 1/6 
Linear 

acceleration 

Conditionally 

stable 

Implicit 

1/2 1/12 Fox-Goodwin 
Conditionally 

stable 

Implicit 

1/2 0 
Central 

difference  

conditionally 

stable 

Explicit 

 

For the average acceleration method, which will be 

used in the solution of case study presented, we 

have: 
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And the coefficients a0 to a7 defined below. 

 

Table 2.  Newmark implicit integration parameters. 
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2.3 VIFEM software 

VIFEM (VIFEM 2016) is Finite Element based 

software, coded in Java language, that results from 

the author’s 18 years of research and development in 

the fields of structural dynamics and finite element 

modelling. 

This software encompasses implementations of a 

number of the numerical analysis techniques covered 

in the preceding paragraphs. These include dynamic 

memory allocation, parallelisation of the solvers 

used both in the implicit and explicit integration of 

the dynamic equations of motion and in the determi-

nation of eigenvalues and eigenvectors. 

VIFEM also has a graphical interface to allow the 

visualization of the all the results in a simple an in-

teractive way, via the extensive use of graphs and 

animations. 

3 CASE STUDY 

3.1 Introduction 

In order to illustrate the relative performance of the 
different numerical analysis techniques described be-
fore when modelling the dynamic response of a 
bridge to moving vehicular loads, a real bridge was 
therefore computed. The case study chosen was a 
52.0m span, 16.7m wide simply supported bridge 
with steel-concrete composite deck, located in Som-
erset, UK. This bridge comprises 6 No. steel girders 
at 2800mm spacing, topped by a 225 mm slab a 
(Figure 2). 



 
 
Figure 2. Somerset Bridge. Typical cross section. 

3.2 Loading 

The vehicular load adopted in the numerical analysis 
was a five axle 44 ton vehicle crossing the bridge at 
a speed of 60 Km/h (Figure 3). 

 
 
Figure 3. Somerset Bridge. 5 Axle 44 ton vehicle layout. 

3.3 Finite Element model 

The bridge was modelled with a 3D finite element 
mesh made out of a combination of 2996 Euler-
Bernoulli beam elements (girder flanges and brac-
ing) and 8832 4 node thick shell elements (rein-
forced concrete deck and girder webs), totalizing 
60336 degrees of freedom (DOF) (Figure 4). 

 
Figure 4. Somerset Bridge. 3D Finite Element mesh. 

3.4 Dynamic response analysis 

The dynamic response was carried out using both 
implicit Newmark integration and modal superposi-

tion using software VIFEM. The time step adopted, 
t, was 0.02 s and 256 time steps were considered. 
A damping coefficient of 5% was taken for the con-
crete and a 2% damping coefficient was taken for the 
steel members. Proportional Rayleigh damping was 
considered based on two control frequencies, f1 and 
f2, equal to 1 Hz and 15 Hz, respectively. 

3.4.1 Time integration analysis 

The typical output of analysis obtained with VIFEM 
is shown in Figure 5, where the response of a node 
in the “z” direction is plotted both in terms of dis-
placements, uz(t) (in blue), velocities vz(t) (in green) 
and accelerations, az(t) (in red). 

 
Figure 5. VIFEM - Typical output. 

 

Alternatively, it is also possible to plot the frequency 

domain response uz(f), vz(f), az(f) (via the use of a 

discrete Fourier transform) side-by-side with the 

time domain response. (Figure 6). By doing so, be-

comes apparent the relative importance of each fre-

quency to the overall response of the “node” in 

study.  

 
Figure 6. VIFEM - Time domain & Frequency domain output. 

 
This can be particularly useful to estimate the natural 
frequencies associated with that degree of freedom, 
without the requirement for an eigenvalue and ei-
genvector analysis to be performed. 

3.4.2 Modal superposition analysis 

The modal superposition analysis was carried out by 

firstly computing the 13 first natural frequencies,n, 

(Table 3) and corresponding modal shapes, n. of the 

bridge (Figure 7) and, subsequently, superimposing 

the response of each mode, using equation (15). 



 

 
Figure 7. Modal analysis – 6 Typical modal shapes 

 
Table 3.  Natural frequencies. 

   
Mode wn [rad/s] fn [Hz] 

1 10.66 1.70 

2 11.18 1.78 

3 21.22 3.38 

4 27.77 4.42 

5 39.76 6.33 

6 44.02 7.01 

7 45.35 7.22 

8 50.75 8.08 

9 58.19 9.26 

10 84.13 13.39 

11 87.05 13.85 

12 89.85 14.30 

13 93.04 14.81 

3.4.3 Analysis of results 

The following graphs show a comparison between 
the dynamic response obtained via implicit integra-
tion and modal superposition for a node located 
close to the mid span. Additionally, the pseudo-static 
displacement resulting from positioning the 44 ton 5 
axle vehicle at the location corresponding to the 
maximum dynamic displacement is also shown. 

 

 
Figure 8. – Implicit integration & Modal analysis (uz) 

 

The dynamic amplification factor, DAF, obtained 
from comparing the results of the implicit integra-
tion with the pseudo-static analysis is circa 2.6 %. 
Using the results of the Modal analysis, the DAF is 
1.0%. 

 

 
Figure 9. – Implicit integration & Modal analysis (vz and az) 

4 CONCLUSIONS 

The analysis carried out on Somerset Bridge shows 
that it is possible to run fully implicit dynamic anal-
ysis of life size bridges to vehicular moving loading, 
even when the number of degrees of freedom (DOF) 
amounts to tens of thousands. With the use of multi-
core processing oriented routines, the analysis can be 
completed within a reasonable time frame. 

Modal superposition analysis can be an attractive 
alternative, particularly when a relatively small 
number of frequencies are required to obtain an ac-
curate response. 

The dynamic amplification (DAF) of the dis-
placements (and derived internal stresses) resulting 
from the moving vehicular load was less than 3%. 
This seems to indicate that even the most modern 
design codes are over conservative. 
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