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SUMMARY 
 

The objective of this thesis is the establishment of an objective comparison between the Finite 

Element Method and the Discrete Element Method when modelling the mechanical behaviour of 

the continuum, both for quasi-static and dynamic response. These two very different approaches 

to the same problem have increasingly gained popularity during the last years, becoming the 

distinction between the fields of application of each method each time more difficult. 

 

This research aims the assessment of the accuracy of the Discrete Element Method to solve 

problems that traditionally belong to the field of the Finite Element Method. This comparison has 

the ultimate purpose of determining the applicability of the first method to problems that involve a 

first stage when the material is elastic or elasto-plastic, followed by a second stage where actual 

physical separation of portions of the material occurs. 

 

The first part of this work comprises a review of the theoretical background and numerical 

techniques used to solve continuum mechanics problems using the Finite Element Method, both 

for quasi-static and dynamic loading. 

 

A description of the Discrete Element Method, encompassing its insights and the numerical 

strategies involved in its implementation constitute the second part of this work. 

 

The establishment of a methodology to model the continua using a Discrete Element Method 

based approach, namely the development of techniques to simulate elasto-plastic behaviour and 

crack path modelling, accompanied by illustrative benchmark examples, are the main pylons over 

which the third part of this research lays. 
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1 Introduction 

1.1 Summary 
 

The objective of this thesis is the establishment of an objective comparison between the Finite 

Element Method and the Discrete Element Method when modelling the mechanical behaviour of 

the continuum, both for quasi-static and dynamic response. These two very different approaches 

to the same problem have increasingly gained popularity during the last years, becoming the 

distinction between the fields of application of each method each time more difficult. 

 

This research aims the assessment of the accuracy of the Discrete Element Method to solve 

problems that traditionally belong to the field of the Finite Element Method. This comparison has 

the ultimate purpose of determining the applicability of the first method to problems that involve a 

first stage when the material is elastic or elasto-plastic, followed by a second stage where actual 

physical separation of portions of the material occurs. 

 

The first part of this work comprises a review of the theoretical background and numerical 

techniques used to solve continuum mechanics problems using the Finite Element Method, both 

for quasi-static and dynamic loading. 

 

A description of the Discrete Element Method, encompassing its insights and the numerical 

strategies involved in its implementation constitute the second part of this work. 

 

The establishment of a methodology to model the continua using a Discrete Element Method 

based approach, namely the development of techniques to simulate elasto-plastic behaviour and 

crack path modelling, accompanied by illustrative benchmark examples, are the main pylons over 

which the third part of this research lays. 
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2 Continuum Mechanics 

2.1 Introduction 

Remembering that Finite Element Method lays on the continuum mechanics theories, it could not 

be avoided to dedicate this chapter to its the fundamental aspects as well as the ones related 

with what is commonly known as nonlinear continuum mechanics. 

 

2.2 Eulerian and Lagrangian coordinates 

The position vector of a material point in the reference configuration is given by X . 

 

�
=

≡=
3

1i
iiii XX eeX  

(2.1) 

 
, where iX  are the components the position vector, and ie  are the unit base vectors of a 

rectangular Cartesian coordinates system. 

 

The main feature of the vector X  is that it will not change with time. The variables X  are called 

material coordinates or Lagrangian coordinates. 

 

Analogously, the position vector in the current configuration is given by 

 

�
=

≡=
3

1i
iiii xx eex  

(2.2) 
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2.3 Deformation and motion 

The motion of a body can be described by Belytschko (2001) 

 
),( tXx φ=  or ),( tx ii Xφ=  (2.3) 

 
, where iii xx e=  represents the position at time t  of the material point X . The coordinates x  

describe the spatial position of the particle are commonly known as spatial, or Eulerian 

coordinates. The function ),( tXφ  maps the reference configuration into the current configuration 

at time t . 

 

Ω
Ω0

Γ

Γ

0

φ(X,t)

u

x

X

x,X

y,Y

 
Figure 2.1 – Current and initial configurations of a body 

 

If the reference configuration is identical to the initial configuration, the position vector x  of any 

point at time 0=t  coincides with the material coordinates, hence 

 
)0,()0,( XXxX φ≡=  or )0,()0,( XX iii xX φ≡=  (2.4) 
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2.4 Eulerian and Lagrangian description 

Two approaches are used to describe the deformation response of a continuum. In the first 

approach, the independent variables are the material coordinates, X  and the time t . This 

description is called material description or Lagrangian description. 

 

In the second approach, the independent variables are the spatial coordinates x  and the time t . 

This is called spatial or Eulerian description. 

 

In fluid mechanics it is often unnecessary to describe the motion with respect to a reference 

configuration. On the other hand, in solids, the stresses generally depend on the history of 

deformation, forcing the use of an undeformed configuration to define the strain. 

2.5 Displacement, velocity and acceleration 

The displacement of a material point is given by the difference between its current position and its 

original position (Figure 2.1), hence 

 
XXXXXu −=−== ),()0,(),(),( ttt φφφ  , ijii XtXu −= ),(φ  (2.5) 

 
The displacement can be also written as 

Xxu −=  , iii Xxu −=  (2.6) 

 

The velocity ),( tXv  can be defined as the rate of change of the position vector for a certain 

material point, i.e. the time derivative with X  held constant. These derivatives, with X  held 

constant, are often called material time derivatives. 

 

The velocity can be expressed in many different ways as shown below. 

 
( ) ( )

t
t

t
t

t
∂

∂=
∂

∂== ,,
),(

XuXuXv φ
�  

(2.7) 

 
In the expression above, the quantity x  is replaced by the displacement u  by using (2.6) and the 

fact that X  is time independent. 

 

The acceleration is the rate of change of velocity of a material point, which can be written as 

follows 

( ) ( )
2

2 ,,
),(

t
t

t
tv

v
Dt
D

t
∂

∂=
∂

∂=== XuXvXa �  
(2.8) 
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2.6 Deformation gradient 

As the description of deformation and measure of strain both play and essential role in nonlinear 

continuum mechanics, the definition of this important variable for the characterization of 

deformation urges. 

 

The deformation gradient is given by 

 
( ) ( )Tt φφ

xX
x

X
XF ∇≡

∂
∂≡

∂
∂= ,

 or 
( )

j

i

j

i
ij X

x
X

t
F

∂
∂≡

∂
∂= ,Xφ

 
(2.9) 

 
From a purely mathematical perspective, the deformation gradient can also be defined as the 

Jacobian matrix of the vector function ( )t,Xφ . 

 

x,X

y,Y

Ω
Ω0

Γ

Γ

0

F

�x

dX

 
Figure 2.2 – Deformation gradient 

 

Considering an infinitesimal line segment xd  in the reference configuration, from the (2.9) we 

can see that the corresponding line segment in the current configuration is given by 

 

XFx ∂⋅=d  or jiji dXFdx ⋅=  (2.10) 
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The deformation gradient in a rectangular coordinate system is given by 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

=

dZ
dz

dY
dz

dX
dz

dZ
dy

dY
dy

dX
dy

dZ
dx

dY
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

dX
dx

F

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

 

(2.11) 

 

The determinant of F , commonly written as J , is known as the Jacobian determinant or the 

determinant of the deformation gradient. 

 

This quantity is of most interest to relate integrals in the current and reference configurations, as 

follows, 

 

��
ΩΩ

Ω=Ω
0

0dJfdf , or ( ) ( ) dZdXdYJZYXfdzdxdyzyxf ��
ΩΩ

=
0

,,,,  (2.12) 

 
To finalize, the material derivative of the Jacobian determinant is given by 

 

i

i

x
v

JdivJJ
Dt
DJ

∂
∂≡=≡ v�  

(2.13) 
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2.7 Strain measures 

Unlike the linear elasticity, many different measures of strain and strain rate are used in nonlinear 

continuum mechanics. 

 

One of the requirements that have to be fulfilled by any strain measure is vanishing when in the 

presence of rigid body rotation. If a certain strain measure fails this requirement, this will mean 

that when undergoing a rigid body motion, this measure will predict non zero strains and 

consequently non zero stresses. 

2.7.1 Engineering strain tensor 

The Engineering strain tensor, � , gives the change in the length of the material vector, Xd  

,when comparing it with its original length, xd . 

 

( )Tu
x
u

� ∇=
∂
∂=  

(2.14) 

 

It is also common to write the Engineering strain tensor as sum of the stretch tensor and the spin 

tensor 

( )[ ] ( )[ ]
�� ��� ���� ��� ��

rspin tensonsorstretch te

2
1

2
1 TT uuuu� ∇−∇+∇+∇=  

(2.15) 

 

Using matrix notation the small strain (Engineering) tensor is given by: 

 

	
	
	




	
	
	

�

�

	
	
	




	
	
	

�

�

∂
∂+

∂
∂

∂
∂
∂
∂

=
	



	
�

�

	



	
�

�

=

x
v

y
u

y
v
x
u

xy

x

x

γ
ε
ε

2

�  

(2.16) 
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2.7.2 Green strain tensor 

The Green strain tensor, E , gives the change in the square of the length of the material vector, 

Xd . 

 
XEX dddSds ⋅⋅=− 222  or jijiiiii dXEdXdXdXdxdx 2=−  (2.17) 

 

The Green strain measures the difference of square of the length of an infinitesimal segment in 

the current (deformed) configuration and the reference (non deformed) configuration. 

 

To evaluate the Green strain tensor, we use (2.10) to rewrite (2.17) as 

 
( ) ( ) ( ) XFFXXFXFxx dddddd T ⋅⋅=⋅⋅⋅=⋅   (2.18) 

 

Using indicial notation, we have 

 
( ) XFFXxx dddXFFdXdXFdXFdxdxdd T

kikjijkikjijii ⋅⋅====⋅   (2.19) 

 

Using the (2.19) with (2.17) and XIXXX dddd ⋅⋅=⋅ , we arrive at, 

 
02 =⋅⋅−⋅⋅−⋅⋅⋅ XEXXIXXFFX dddddd T   (2.20) 

 
,or 

( ) 02 =⋅−−⋅⋅ XEIFFX dd T   (2.21) 

 
Since the relation above must hold for all Xd , we finally obtain 
 

( )IFFE −⋅= T

2
1

 or ( )ijkj
T

ikij FFE δ−=
2
1

 
(2.22) 

 
Sometimes E  is written as  

 

( )ICE −=
2
1

  
(2.23) 

 
, where FFC ⋅= T  is the right Cauchy-Green tensor. 
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2.7.3 Logarithmic strain tensor 

The Logarithmic strain tensor, Log� ,is given by 

 

( ) ( )BFF� ln
2
1

ln
2
1 == T

Log   
(2.24) 

 
, where B  is the left Cauchy-Green tensor. 

 

The explicit form of this tensor is obtained performing a spectral decomposition of B  that will 

yield the eigenvalues (principal stretches) and the eigenvectors (principal directions of stretching). 

 

Particularizing for the two dimensional case we have, 

 

( ) ( ) i
i

iLog EB� �
=

==
3

1

ln
2
1

ln
2
1 λ   

(2.25) 

 

, where iλ  are the eigenvalues of left Cauchy-Green tensor, B , and iE  are the tensors 

containing the correspondent eigenprojections vectors. 
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2.8 Stress measures 

2.8.1 Cauchy stress tensor 

Let us consider a deformable body at its current position Bonet (2008). 

 

x,X

y,Y

∆p

∆a

n

R1

R1

R2

t
n

-t
-n

 
Figure 2.3 – Traction vector 

 

The traction vector, t , can be defined from the following mathematical limit, 

 

a
p

a ∆
∆=

→∆ 0
lim)(nt   

(2.26) 

 
The traction vectors in Cartesian directions (stress components) (Figure 2.4) are given by 

 

3332231133

3322221122

3312211111

)(

)(

)(

eeeet
eeeet

eeeet

σσσ
σσσ
σσσ

++=
++=
++=

 (2.27) 

e1

e2

e3

σ22

σ32

σ12

t(e  )
2

 
 

 

Using indicial notation, 

 

�
=

=
3

1

)(
i

iijj eet σ  

 
 
 
 

(2.28) 

Figure 2.4 – Stress components   
 
The tensor ijσ  is the Cauchy stress tensor often called as true stress due to the fact this is the 

only stress measure with a physical meaning. 



Chapter 2. Continuum Mechanics 2.11 
 

Lets consider the equilibrium of an elemental tetrahedron (Figure 2.5) under the action of active 

and passive tractions and a body force per unit of volume, f . 

 

e1

e2

e3

n
da

1
da

1

t(n)

da
3

da

t(-e  )
2

 
Figure 2.5 – Elemental tetrahedron  

 
Writing the equilibrium equations, we have 

 

0fetnt =+−+�
=

dvdada
i

ii

3

1

)()(  
(2.29) 

 
Calling daenda ii )( ⋅= , the projection of the area, da , onto the plane orthogonal to the 

Cartesian direction , i  
 

Dividing equation (2.29) by da  and remembering that 0→
da
dv

, we obtain, 

 

( )

( )
n

een

enet

fetnt

⋅=

⋅=

⋅=

−−−=

�

�

�

=

=

=

σ

σ ij
ji

ij

j
j

j

j

j
j da

dv
da

da

3

1,

3

1

3

1

)(

)()(

 

(2.30) 

 

This Cauchy stress tensor gives the true stress acting in a facet, t , from the knowledge of the 

components of its normal vector, n . 
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2.8.2 Other stress measures 

Often within the context of finite deformations, it is more convenient to define the stress referring 

to a known configuration state, rather then to the real configuration state. 

 

Although these alternative stresses sometimes do not have a obvious physical meaning, they are 

useful as they are work conjugates of certain strain measures. 

2.8.2.1 1st Piola-Kirchoff stress tensor 

The 1st Piola-Kirchoff stress tensor, P , is defined as 

 
trJ −= F�P , with ( )Fdet=J  (2.31) 

 

2.8.2.2 2nd Piola-Kirchoff stress tensor 

The 2nd Piola-Kirchoff stress tensor , S , is defined as 

 

trJ −−= �FFS 1  and tr

J
FSF�

1=  
(2.32) 

 
We should emphasize that the 2nd Piola Kirchoff stress tensor is symmetric and energetically 

consistent with the Green-Lagrange strain tensor. In other words, the strain energy density 

calculated using the 2nd Piola Kirchoff stress tensor with the Green-Lagrange strain will be the 

same as that calculated with the Cauchy stress tensor and the small deformation strain tensor: 

 
ES�� = or ijijijij ES�� =  (2.33) 

 

2.8.2.3 Kirchoff stress tensor 

The Kirchoff stress tensor, � , can be defined as the rate of volumetric change, 

( )Fdet=J ,under the time, 0t , of a standard configuration to the time t of the current 

configuration. 

 
�� J= , with ( )Fdet=J  (2.34) 



Chapter 2. Continuum Mechanics 2.13 
 

2.9 Dynamic equilibrium 

2.9.1 Translational equilibrium 

Lets consider a body under the action of body forces, bf ρ=  , and traction forces, t , per unit of 

area acting on the boundary Bonet (2008). (Figure 2.6). 

 

x,X

y,Y

V
v

dv

t

n

φ(X,t)

f

time=0

time= t

 
Figure 2.6 – Equilibrium 

 
The balance of linear momentum implies that  
 

��� +=
∂
∂

VVV

dVdAdV
t

btv ρρ
�����

momentum of change of Rate

 
(2.35) 

 
Remembering that n�t ⋅= , 
 

��� +=
∂
∂

VVV

dVdadV
t

b�nv ρρ  
(2.36) 

 
Using the Gauss theorem, we obtain 
 

��� +=
vVV

dVdVdivdV b�a ρρ  (2.37) 

 
, where the vector �div  is given by, 
 

i
ij j

ij e
x

div �
= ∂

∂
=

3

1

σ
�  

(2.38) 
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The previous equation can be applied to any enclosed region of the body, 

 

ab� ρρ =+div  (2.39) 

 

The equation (2.39) is known as the local spatial dynamic equilibrium equation for a deformable 

body. If the equation is not satisfied, (2.40) defines out of balance or residual force per unit of 

volume, r  as: 

 

ab� ρρ −+= divr  (2.40) 

 

2.9.2 Rotational equilibrium 

The rotational equilibrium of general body implies that the total moment of body and traction 

forces about any arbitrary point, say the origin, is zero. 

 

0fxtx =×+× ��
vdv

dvda  (2.41) 

 
Remembering that the cross product of a force with a position vector, x , yields the moment of 

that force about an axis through the origin. 

 

( ) 0fxn�x =×+× ��
vdv

dvda  (2.42) 

 
After some tedious manipulation, it can be demonstrated that previous equation implies that  
 

T
��=  or jiij �� =  (2.43) 

 
, which is saying that the Cauchy stress tensor is symmetric. 
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2.10 Principle of virtual work 

Let us consider a body in dynamic equilibrium and let uδ be an arbitrary set of virtual 

displacements such that 0=uδ  on UΓ . 

X

Y

time= t

Γt

ΓU

Vt

u

δu

 
Figure 2.7 – Principle of virtual work 

 
Multiplying the differential equilibrium equation by uδ  and integrating over the volumeV . 

 

��� =+
VvV

dVdVdVdiv uaubu� δρδρδ  (2.44) 

 
Noting that  

 

( ) ���uu� δδδ :+= divdiv  and ( )Tuu� δδδ ∇+∇=2  (2.45) 

 
And using the Gauss theorem gives: 
 

����
Γ

+=+
T

dAdVdVdV
vVV

u�nub��ua δδρδδρ :  (2.46) 

 
Remembering the symmetry of �  and the boundary conditions: 
 

tn� =  on TΓ  and 0u =δ  on UΓ  (2.47) 

 
We finally have 

��� ���� ������ ����� ��
forces external ofWork forces internal ofWork 

: ����
Γ

+=+
T

dAtdVdVdV
vVV

uub��ua δδρδδρ  (2.48) 
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Using matrix notation and defining: 
 

[ ]Txyyx γεε=�  

[ ]Txyyx τσσ=�  

(2.49) 

 
The PVW becomes: 
 

����
Γ

+=+
T

dAdVdVdV T

v

T

V

T

V

T bubu��uu δδρδδρ ��  (2.50) 

 

2.11 Material models 

2.11.1 Linear elastic material 

Being this the simplest and the oldest material model, it is still one of the most essential and 

widely apllied in many fields of Engineering. 

 

The stress strain relation for a linear elastic material, undergoing small strains, is given by: 

 

�:D� =  (2.51) 
 
, with D , being the small strain elasticity tensor 

 

IIlD ⊗�
�

�
�
�

� −+= GKG
3
2

2  
(2.52) 

 
, defined by the Bulk modulus K  , the shear modulus G , the fourth order identity tensor I  and 

the second order identity tensor l . 

 

( )ν213 −
= E

K   

( )ν+
=

12
E

G  

(2.53) 
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2.11.2 Neo-Hookean material 

This model, sometimes referred as the large strain extension of the Hooke’s law, is one of the 

simplest hyper elastic models, for moderately large deformations. 

 

The following relation between the deformation gradient, F , and the Kirchoff stresses can be 

established 

 
( ) ( ) IIB� Jlnλµ +−=   ,with trFFB =  and  )det(F=J  (2.54) 

 
, with B being the left Cauchy-Green Tensor and , F , the deformation gradient defined before. 

 
The Lame constants  µ  and λ  are given by 
 

( )ν
µ

+
=

12
E

 

3
23 µλ −= k

 

, with ( )ν213 −
= E

k  (2.55) 

 
The real or Cauchy stresses, � , can be recovered from the Kirchoff stresses as follows 

 

J
1⋅= ��  

(2.56) 
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2.11.3 Hencky material 

The Hencky model can be defined as the finite logarithmic strain-based extension of the standard 

linear elastic material. This model was proposed by Hencky (1933) to model the behavior of 

vulcanized rubbers. Let, Log� , be the Eulerian (spatial) logarithmic strain tensor Neto (2008). 

 

( ) ( )BV� ln
2
1

ln ==Log  
(2.57) 

 

The Hencky strain-energy function is defined in a compact form as 

 

( ) LogLogLog �:D:��
2
1=ψρ  

(2.58) 

 

, where D has the same format of the infinitesimal isotropic elasticity tensor referred before 

 

IIlD ⊗�
�

�
�
�

� −+= GKG
3
2

2  
(2.59) 

 

The above strain-energy renders the following linear relationship between the Kirchoff stress and 

the Eulerian (spatial) logarithmic strain: 

 

�:D
�

� =
∂
∂= ψρ  

(2.60) 
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2.12 Plasticity 

Let us consider a point of a deformable body that undergoes external forces that induce 

deformations beyond the elastic limits of the constituent material. When this happens, part of the 

total deformation of the point will remain even after total unloading (Figure 2.8) and the material 

starts to yield entering in the plastic state. 

 

σ
Y

σ

εε
p

ε
e

ε
 

Figure 2.8 – Uniaxial Yielding 
 

The total strain is given by the following sum 

 

pe ��� +=   (2.61) 

 

, where e�  and p�  represent the elastic (reversible) and the plastic (permanent) components of 

the total strain. 
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When dealing with multiaxial states of stress, the threshold between the yielding and non yielding 

state (elastic and elasto-plastic) is usually defined by what is often called a yield criterion. 

 

The yield criterion is defined by a mathematical function (yield function) that depends on the 

existing internal stresses of the material, eσ , and other internal variables, A , at certain time 

step, nt . 

 
Hence, 
 

( )etn
ff σ,,

,
A�=   (2.62) 

 
, where eσ  is equivalent uniaxial yield stress, commonly known as effective stress. 

 
The yield function, f , defines the equation of a surface in the space of the principal Cauchy 
stresses. 
 

σ
2

σ
1

f=0

σ

a= dσ
df

σ (PLASTIC)ELASTIC

 
 

Figure 2.9 – Multiaxial yielding 
 

Hence, a material is yielding if the following condition is verified: 

 
( ) 0,,

,
== etn

ff σA�   (2.63) 

 
The plastic flow is ruled by the Prandtl-Reuss flow rules translated by: 
 

a
�

�p λλ �� =�
�

�
�
�

�

∂
∂= f

  
(2.64) 
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, where p�  is the effective plastic strain, a  is the vector normal to the yield surface and λ�  is a 

positive constant usually referred to as “plastic strain-rate multiplier”. 

 

The Cauchy stress changes are related to the strain via 
 

( ) ( )a�D��D� p λ����� −=−=   (2.65) 

 
The equation (2.65) relates mall changes in stress, �� , with small changes in elastic strain, e��  

and p�� . 

 
For plastic flow to occur, the stresses must remain on the yield surface and hence, 
 

�a�a
�

���� :==
∂
∂= Tf

f σ   
(2.66) 

 
The plastic multiplier, λ� , can be found we can pre multiplying equation (2.65) by Ta  and using 

equation (2.66). 

 

Daa
�Da

T

T ��=λ   or  
aDa
�Da

::
:: ��=λ  

(2.67) 

 
Substituting (2.64) in (2.65) we have, 

 

�
Daa

DaaID�D� ��� ��
�

�
��
�

�
−== T

T

T    or  ( ) ( ) �aDaD
aDa

D� �� :::
::

1
�
�

�
�
�

� ⊗−=  
(2.68) 

 
Where TD  is the so called modular tangential matrix (or forth order tensor) which is nor only a 

function of the elastic parameters ( E and ν ) but also depends on the current Cauchy stresses, 

� . 
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3 FEM 

3.1 Introduction 

Being the Finite element method a robust numerical technique to solve many different 

engineering problems and one of the fundamental methods in the development of this research 

work , it is fully justified a description of its insights. 

The Finite Element Method is a numerical technique that makes possible to obtain approximate 

solutions for the differential equations that rule most physic phenomena, including the ones 

related with solid mechanics. 

The continuum is assumed as homogeneous and often isotropic (same properties in every 

direction) and is divided into regions or elements. When the displacements are the unknown 

Zienkiewicz (2000), their values inside of the element are interpolated using special functions 

called Shape functions. 

 

The first part of this chapter covers the essential features of the method such as the subdivision 

of the domain into finite elements (discretization) and the kinematics. 

 

The aspects related with small and large strains FE plasticity are covered are discussed and 

explained in the following point. 

 

The last part of this chapter covers the aspects related with the techniques used to integrate the 

equations of motion in time, namely the commonly known as implicit and explicit methods. 
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3.2 Finite element approximation 

3.2.1 2D Geometry and displacement 

The continuum can be divided in a finite number of regions, commonly called finite elements 

(Figure 3.1). The set formed by these regions (elements) is called mesh. 

 

The displacement field within each element, ( )yx,u , can be approximated using appropriate 

shape functions, iN . There will be as many shape functions as the number of nodes of the finite 

element possesses. 

X

Y

φ(X,t)

Mesh at time= tMesh at time=0

ΓU

Γt Γt

ΓU

V0

Vt

Finite element

 
 

Figure 3.1 – 2D Discretization of the continuum. Finite element mesh 
 

These mathematical functions permit to obtain the values of a scalar field within any point of a 

finite element from the knowledge of the nodal values of the field. Each function, iN , will be 

worth unity at the “ i ”node of the element and zero in the remaining nodes. 

 

These same functions are often used to interpolate both the geometry and the displacement field 

of the problem itself. When this is the case, these finite elements are called isoparametrics. 
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The geometry of the element can then be interpolated as follows, 

 

( ) ( )

( ) ( ) e

e

i

n

i
i

i

n

i
i

YY

XX

�

�

=

=

=

=

1

1

,N,

,N,

ηξηξ

ηξηξ
 

(3.1) 

 

The set of axis ( )ηξ ,  are the local axis of the finite element (Figure 3.2). 

 

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

X

Y

(-1,-1) (1,-1)

(-1,1) (1,1)

ξ

η

Global to local

 
 

Figure 3.2 – 2D Discretization of the continuum. Global and local coordinates 
 

The shape functions of the four nodded quadrilateral finite element, referred to the local axis, are 

given by: 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )ηξηξ

ηξηξ

ηξηξ

ηξηξ

+−=

++=

−+=

−−=

11
4
1

,N

11
4
1

,N

11
4
1

,N

11
4
1

,N

4

3

2

1

 

(3.2) 
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The displacement field of any point of the finite element, u , can be obtained in a similar way, 

 

( ) ( )

( ) ( ) e

e

i

n

i
i

i

n

i
i

vv

uu

�

�

=

=

=

=

1

1

,N,

,N,

ηξηξ

ηξηξ
 

(3.3) 

 
In the case of the four nodded quadrilateral finite element (3.2) we will have, 

 

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( ) �

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

=�
�
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0,N
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x

y

x

Y

X

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξX  

(3.4) 

and 
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( )
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�
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=
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3

2

2

1

1

4

4

3

3

2

2

1

1

,N0

0,N

,N0

0,N

,N0

0,N

,N0

0,N

),(
,

,

v

u

v

u

v

u

v

u

v

u

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξ
ηξ

ηξu  

(3.5) 

 

Or, in a more compact way, we can write (3.4) as follows, 
 

( ) ( ) eXNX ηξηξ ,, =  (3.6) 

 
( ) ( ) euNu ηξηξ ,, =  (3.7) 

 
Where, u  represents the displacement vector correspondent to the local coordinates ( )ηξ , , 

( )ηξ ,N  is the shape function matrix and eu  is the vector containing the nodal displacements. 
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As seen in the preceding chapter on Continuum Mechanics, the measures of strain often involve 

the computation of partial derivatives of the displacement field, ( )ii vu ,u . 

 

( ) ( )
i

NodesNo

i

i u
xx

u
�

= ∂
∂=

∂
∂

1

,N, ηξηξ
 and 

( ) ( )
i

NodesNo

i

i u
yy

u
�

= ∂
∂=

∂
∂

1

,N, ηξηξ
 

( ) ( )
i

NodesNo

i

i v
xx

v
�

= ∂
∂=

∂
∂

1

,N, ηξηξ
 and 

( ) ( )
i

NodesNo

i

i v
yy

v
�

= ∂
∂=

∂
∂

1

,N, ηξηξ
 

(3.8) 

 

The derivatives of the shape functions will be obtained from the chain rule of differentiation as 

follows, 

 

ηηη

ξξξ

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

y
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y
y

Nx
x
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(3.9) 

Or, 
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(3.10) 

hence, 
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�
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∂
∂
∂
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�
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�
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∂
∂
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∂
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ξ
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i
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N

J

y
N
x

N

1   

(3.11) 

 

Where Ni represents shape function associated with node i of the element. 
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Finally, we have  
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(3.12) 

 

The transformation (3.11) is valid only if the determinant of the Jacobean matrix, J , is positive. 

The elements of the Jacobean matrix of the element [ ]J are obtained from 
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(3.13) 

 
The real area of the surface of the element comes from, 

ηξηξ ddJddJdxdydA === . 

The knowledge of this area will reveal of great interest in the determination of the stiffness 

matrix of the element. 
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3.2.2 Strain 

Let us consider the engineering strain tensor in Voigt notation, 

�
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(3.15) 

 

Remembering that the derivative of the displacement field can approximated by: 
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(3.16) 

 

We can re-write (3.13) as follows, 
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(3.17) 

 

Or, in a more compact format, 

( ) ee UB� ηξ ,=  (3.18) 

 

With eB , being the shape functions derivatives matrix and eU  the vector containing the 

displacements of each degree of freedom of the element e . 
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3.2.3 Stresses 

The stresses are usually computed at the same Gauss points where the numerical integration 

took place and they will depend upon the material model adopted. 

3.2.3.1 Cauchy Stress 

In case of small strains, the elastic Cauchy stress in at a certain Gauss point of the element with 

coordinates ( )ii ηξ , , is given by 

 

( ) eii UBD�D� ηξ ,==  (3.19) 

3.2.3.2 Kirchoff Stress 

Within the context of large strain plasticity, frequently becomes very useful the adoption of the 

Kirchoff stress tensor, � . This can be easily done from the knowledge of the Cauchy stress 

tensor, as follows: 

 

( ) eiiJJ UBD�� ηξ ,==  (3.20) 
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3.3 Principle of Virtual Work 

Let us consider a body in dynamic equilibrium and let uδ be an arbitrary set of virtual 

displacements such that 0=uδ  on UΓ . 

X

Y

time= t

Γt

ΓU

Vt

u

δu

 
 

Figure 3.3 – Discretized Principle of virtual work 
 

Remembering the Principle of virtual work seen in Chapter 2, we have: 
 

��� ���� ������ ����� ��
forces external ofWork forces internal ofWork 

: ����
Γ

+=+
T

dAtdVdVdV
vVV

uub��ua δδρδδρ  (3.21) 

 
With, 
 

tn� =  on TΓ  and 0u =δ  on UΓ  (3.22) 

 
Using matrix notation and defining: 
 

[ ]Txyyx γεε=�  

[ ]Txyyx τσσ=�  

(3.23) 

 
The PVW becomes: 
 

����
Γ

+=+
T

dAdVdVdV T

v

T

V

T

V

T bubu��uu δδρδδρ ��  (3.24) 
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3.3.1 Discretization 

Remembering that the displacement and acceleration fields of a finite element can be 

approximated as  

 

( ) ( ) e
T

e
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i
ie t uNuNxU ==�
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,, ηξ  

( ) ( ) e
T

e

n

i
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(3.25) 

 
And 
 

( ) ee UB� ηξ ,=  (3.26) 

 
Substituting, we have  
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(3.27) 

 
Dividing the work into its internal and external components, we have 
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Considering that externalernal WW =int  for any arbitrary 
T

euδ we finally obtain the generic 

expression: 
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The previous equation can be rewritten as: 
 

( ) External
t

Internal
t FuFuM =+��   (3.31) 

 
Considering the particular case of small strain elasticity where, �D� = , (3.30) will assume the 

following format 
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(3.32) 

 
Hence (3.32) can be rewritten as: 
 

External
ttTtt FuKuCuM =++ ���   (3.33) 

 
, with the above referenced entities given by 
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( )KMCC ,=  (Dampening  matrix) (3.35) 

 

� �� �
= Γ=

+=
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e

T
e

elemn

e V

T
e
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t

T

dAdV
11

bNbNF ρ  (External forces) (3.36) 
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uMuNNF ���� =�
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= � �
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elemn

e V
e

T
e

Inertia
t dV

1

ρ

� �
=

=
elemn

e V
e

T
e dVK

1
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or 

� �
=

=
elemn

e V
eT

T
eT dVK

1

BDB   

(Internal forces) 
 
 
 
(Inertial forces) 
 
 
(Stiffness matrix) 
 
 
 
 
(Tangent stiffness matrix) 

(3.37) 
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3.4 Newton-Raphson solution algorithm 

The solution of the linearized global equilibrium equations cannot be achieved in one single 

operation due to the non linear nature of the relation between the applied forces and the 

correspondent internal stresses. Hence, Equation (3.38) is commonly designated as a non linear 

system of equations in opposition to its counterpart a linear system of equations, being the last 

mostly restricted to the elastic small strain formulations. 

 
External

ttTtt FuKuCuM =++ ���  or ( ) 0=+−= Internal
t

Inertia
t

External
t FFFr   (3.38) 

 
The Newton-Raphson algorithm consists in the following iterative scheme: 

 
1. Apply the target incremental load, External

t
External

tt FFF −=∆ ++ 11
 

2. Computation of the tangent stiffness matrix ( )( ))(
1

i
t

i
T d +uK  

3. Computation of correspondent iterative displacements, ( )iuδ  

4. Computation of the incremental displacement, ( )ii
t

i
t dd uuu δ+= +

+
+

)(
1

)1(
1

 

5. Computation of the associated internal and inertial forces, Internal
t 1+F  and Inertia

t 1+F  

6. Computation of the residual vector, ( ) ( )Inertia
t

Internal
t

External
t

i
111 +++ +−= FFFr  

7. Computation of the tangent stiffness matrix ( )( ))1(
1

1 +
+

+ i
t

i
T duK  

8. Apply the residual vector, ( )1+ir and norm, ( )1+ir  

9. If ( )1+ir  bigger than tolerance go to step 2 Else go to step 1 

 

F
t

u
t

u
t+1

∆F

u
t+1

F
t+1

δu
i

δu
i+1

δu
i+2

(i) u
t+1

(i+1) (i+2)

du t+1

r (i)

r (i+1) r (i+2)

KT

(i)

KT

(i+1) KT

(i+2)
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du t+1
(i+1)

du t+1
(i+2)

 
 

Figure 3.4 – Newton-Raphson iteration scheme 
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3.5 Finite element elasto-plasticity in small strains 

3.5.1 Integrating the rate equations 

When solving a boundary value problem numerically, using the FEM, the stress and strain 

increments possess a finite character, hence the differentials ��  and ��  will be replaced by �∆  

and ε∆ . 

 

By doing this we are, in fact, adding some error to the integration of the stress and strain rate 

equations. Hence, it is of great importance to adopt strategies that will minimize these errors. 

 

Let us consider the following figure representing the stress in a Gauss point before, X� , and 

after an incremental stress �∆  change has been applied, ��� XB ∆+= . 

 

σ
2

σ
1

f=0σσ C

C

B

x

x

aC

 
Figure 3.5 – Returning to yield surface 

 

Once the stresses should always remain on the yield surface 0=
∂
∂= σ��
�

f
f  at all times, the 

stress at point B must corrected and brought back to yield surface, C� . Many different strategies 

can be successful employed to achieve this, laying the difference between them on the 

robustness and speed of convergence each one will guarantee. We can divide these techniques 

into two main categories: the explicit and the implicit methods. The ones belonging to the first 

category are often simpler but less robust than the second ones, in what concerns the 

convergence to the correct point on the yielding surface. 
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3.5.1.1 Backward-Euler return to the yield surface 

The backward-Euler is one of the most popular and robust algorithms to return to the yielding 

surface. This technique is based on the following equation Crisfield (1991): 

 

CBC aD�� λ∆+=   (3.39) 

 
That implies the knowledge of the normal to the yield surface in the final point, making this return 

method implicit, hence needing an iterative solution procedure. 

 

To derive an iterative loop a residual, representing difference between the current stresses and 

the backward-Euler stresses, must be defined. 

 

( )CB aD��r λ∆+−=  with 
DaaT
Bf=∆λ  

(3.40) 

 

Keeping the stresses at B, B� , fixed, a truncated Taylor expansion can be applied to (3.40) so 

as to produce the residual for the generic iteration, n 

 

�
�

aDaD�rr ���
∂
∂∆+++= λλon   

(3.41) 

 
, where λ�  is the change in λ∆  and ��  is the change in � . 
 
Setting the residual, nr , to zero we have, 
 

( ) aDQrQaDr
�

aDI� λλλ ��� 11
1

−−
−

+=+�
	



�
�




∂
∂∆+−= oo   

(3.42) 

 
Performing a similar Taylor expansion of the yield function, we will have 
 

0'00 =++=
∂
∂+

∂
∂+= λε

ε
���� CCCCC �a�

�
Af

ff
ff T

ps
ps

n   
(3.43) 

 
Rearranging (3.43) we finally obtain the correction to the plastic multiplier, 
 

'1
0

10

CCC

CC

DaQa
rQa
A

f
T

T

+
−= −

−

λ�   
(3.44) 
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In the following flowchart, the backward-Euler iterative algorithm is summarized. 
 

Iteration Loop to clear residual

tolerance≤r

Start

End

BBC aDλ∆+=σ σ

DaaT
Bf=∆λ

B B

( )BB aDr λ∆+−=σ σ

Estimates initial plastic multiplier

Estimates initial stress

Calculates initial residual

Calculates Q matrix
aDIQ λ �

	



�
�



∂
∂∆+−=

Calculates plastic multiplier change

σ

Calculates stress change

aDQrQ λ�11 −− += oσ�

'1
0

10

CCC

CC

DaQa
rQa
A

f
T

T

+
−= −

−
λ�

0

Calculates yield function
'0 ++= λ��
CCCC a Aff T(i) σ(i)

(i)C

(i)

(i) (i)

Updates stress 

=σ σ σ�+
(i) (i-1) (i)

C(i)

C

 
Figure 3.6 – backward-Euler return algorithm 
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3.6 Finite element elasto-plasticity in large strains 

3.6.1 Multiplicative elasto-plastic kinematics 

The fundamental principle on which the large strain elasto-plasticity lays is the multiplicative split 

of the deformation gradient, F , into elastic and plastic contributions. It is assumed that the 

deformation gradient can obtained from the product Neto (2008) 

 
peFFF =   (3.45) 

 
Where eF  and pF  are the elastic and the plastic deformation gradients, respectively. The 

multiplicative split was first introduced by Lee and Liu (1967) and by Lee (1969). 

 

F=

Initial configuration

P

Final configuration

F F
e p

P0

Local intermediate
 configuration

F
p

F
e

φ(X,t)

 
 

Figure 3.7 – Multiplicative split of F  
 
This multiplicative split implies the existence of a local unstressed intermediate configuration 

defined by the plastic deformation gradient, pF . Hence, at each material point, the local 

intermediate configuration is obtained from the fully deformed configuration by purely elastic 

unloading, defined from the inverse of eF . 
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3.6.2 General isotropic large strain plasticity model 

With this model, based on logarithmic strains and Exponential return mapping Neto (2008), the 

same procedures adopted for the integration of the rate equations in small strains can be readily 

used. 

 

Start

End

Backward-Euler

BBB ∆+=σ σ
Elastic trial Cauchy stress

incσ σtrial

B =σ
Elastic incremental trial stress

∆ incεD
e =

Hyperelastic incremental trial strain

incε
Large strains (Hencky)( )tdu

B Exp( )Log

e =BTrial

2

tF∆ eB tF∆ Tr

B =τ
Hyperelastic trial Kirchhoff stress

TrialεD ( )Log

Trialε Log = Log( )eBTrial

eBTrial

1
2

Small strains ?
Yes No

B =σ

small strain return Algorithm

Small strains ?
Yes No

Cτ
Recovers Cauchy stress

Det( )C=σ F
-1

 
 

Figure 3.8 – Isotropic large strain plasticity flowchart 
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3.7 Consistent tangent operator 

A linearized version of the finite deformation virtual work equation, (3.27), suitable to be used 

within the Newton-Raphson algorithm is generically given by  

 
( ) ( ) )(1 ii

T
ir uK δ+=  (3.46) 

 
Remembering that, 
 

� �
=

=
elemn

e V
eTc

T
eTc dV

1

BDBK  (3.47) 

 
Where TcD  is the small strain consistent tangent modulus. 
 

3.7.1 Consistent tangent modulus 

Within the Newton-Raphson solution algorithm, a linearized (or tangent) form of the incremental 

equilibrium equations is needed. 

 

Recalling that the standard back-Euler algorithm can be expressed as 

 

CBC aD�� λ∆+=   (3.48) 

 

with, �D�B �= , being the elastic trial stress and C� the corrected stress on the yielding surface. 

 

The differentiation of (3.48) will lead to 

 

�

aDaD�D�
∂
∂∆−−= λλ���   

(3.49) 

 
, where the last term of (3.42) is omitted from the derivation of the standard tangent modular 

matrix (modulus), TD  

 

From (3.42) , after regrouping the terms, we have 

 

( )a�D
�

aI� λλ ��� −�
	



�
�




∂
∂∆+=

−1

  
(3.50) 
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The previous equation may be written in a more compact way as follows, 
 

( ) ( )a�Ra�DQ� λλ ����� −=−= −1   (3.51) 

 
The Q  matrix was previously defined in the last point concerning the back-Euler return algorithm. 
 
To remain on the yielding surface, f , should be zero. Hence, 
 

0'' =−−=−= λλλ ����� AAf TTT Raa�Ra�a   (3.52) 

 
Using (3.52) in (3.50)  we finally obtain the tangent consistent modular matrix TcD  
 

�

aRa
RRaaR�D� ��� ��

	



��
�




+
−==

'AT

TT

Tc   
(3.53) 

 

3.7.2 Consistent spatial tangent modulus 

In the context of a spatial (Updated) large strain Finite Element formulation becomes necessary 

the definition of a spatial tangent modulus. 

 

According to Neto (2008), the global spatial tangent consistent stiffness matrix is given by 

 

� �
=

=
elemn

e V
e

T
e

Spacial
T dV

1

GaGK  (3.54) 

 
With, G , being the discrete spatial gradient operator which for the plane strain/stress analysis 

has the following format 
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0.....00
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0....00
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NNN

NNN

NNN

NNN

G  

(3.55) 

 

And , a , is the matrix form (Voigt notation) of the fourth order consistent spatial tangent modulus 

ijkla , defined by the cartesian components: 

 

jkillm
km

ij
ijkl F

FJ
a δσ

τ
−

∂
∂

= 1
 (3.56) 
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3.7.3 Von Mises yield criteria 

3.7.3.1 Introduction 

The Von Mises is one of most simple and well known yielding criteria, yet capable of reproducing 

the behaviour of many materials. As such, the fundamentals of this criterion will be further 

explained here. The comparisons that will be performed in following chapters will also be based 

on this criterion. 

 

 

σ
2

σ
1

f=0

a= dσ
df

σ (PLASTIC)ELASTIC

 

Figure 3.9 - Von Mises yielding criteria 

 

Geometrically it may be defined as a cylinder in the space of principal stresses, },,{ 321 σσσ , 

whose axis is the hydrostatic line ( 321 σσσ == ) (Figure 3.9) 

 
( ) ( ) 0, =−= Pe Akf εσσ  (3.57) 

 
,Where , eσ , is the effective stress and ( )pA ε  is the hardening function of the material. 

 
The effective stress eσ  is obtained as a function of the second invariant of the deviatoric stress 

tensor, 2J , translated by the following equations  

 

23Je =σ  with )(
2
1 2222

2 zyxxy ssssJ +++=   
(3.58) 
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The plastic flow vector, a , is given by 
 

( )zxyyx ssss ,2,,≡a   (3.59) 

 
, being zxyyx ssss ,2,,  the components of the deviatory stress tensor. 

 

3.7.3.2  Von Mises consistent tangent modulus 

The matrix, 
�

a
∂
∂

 , for the Von Mises criterion assumes this simple explicit form Crisfield (1997): 

T

ee

T

ee

aaAaa
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(3.60) 

 
Remembering that,  

�
	



�
�




∂
∂∆+=
�

aDIQ λ   
(3.61) 

 
And, 

DQR 1−=   (3.62) 

 
We finally obtain the consistent tangent modulus , TcD ,from 
 

��
	



��
�




+
−=

'AT

TT

Tc aRa
RRaaRD   

(3.63) 

 
This operator enhances the convergence capabilities of the Newton-Raphson algorithm, when 

comparing to the standard tangent modulus, TD , due to the consistence with the way the rate 

equations are integrated. 
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3.8 Dynamic analysis (Time integration) 

3.8.1 Introduction 

When dealing with problems that vary in time (dynamic problems), besides the spatial integration 

of the equilibrium equations, it is necessary to integrate in time. As seen before, there are many 

ways to achieve this. In the following points some different time integration techniques will be 

explored and compared. 

3.8.2 Implicit and explicit time integration 

When integrating the equations of motion we can distinguish two main approaches, the explicit 

and the implicit integration schemes. 

 

The explicit methods use the differential equation at time “ t ” to predict the solution at time 

“ tt ∆+ ”. This way the response of the system at “ tt ∆+ ” is “explicitly” obtained from the 

response at “ t ”. 

 

This procedure has the big advantage of not involving a solution of a set of linear equations for 

each time step. The weakness of this strategy lays on the fact the size of the time step that 

guarantees the stability of the solution has to be very small. Nevertheless, when solving real 

problems that involve a huge number of degrees of freedom this technique is often the only one 

that can solve the problem. 

 

The implicit methods attempt to satisfy the differential equation at time “ t ” from the solution of 

tt ∆− . This method implies the solution of a set of linear equations for each time step which can, 

in same cases, be a major disadvantage. However, in should be emphasized here that 

considerably larger time steps might be used being some implicit methods unconditionally stable. 

 

As a final remark we cannot say that one method is unconditionally better than the other. The 

choice for each one of the preceding methods will heavily depend of the type and size problem 

that has to be solved. 
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3.8.2.1 Newmark based implicit Methods 

It was the year of 1959 when Newmark (1959) presented the world a family of single-step 

integration methods oriented for the solution of dynamic problems, such as the ones involved in 

blast and seismic loading. From that moment on, several other fields applied these methods 

successfully, having some improvements been added by many researchers. 

 

The fundamental linear dynamical equilibrium equation is given by  

 

tttt FKuuCuM =++ ���  (3.64) 

 

, where M is the mass matrix, C  is the damping matrix, K  is the linear stiffness matrix and 

finally tF .is the external force vector at instant, t . 

 

The kinematical entities, tu�� , tu�  and tu  represent the acceleration, velocity and displacement  

vectors at instant t . 

 

If we write the displacement and velocity equations using Taylor expansions, we obtain 

 

⋅⋅⋅+∆+∆+∆+= ∆−∆−∆−∆− ttttttttt
tt

t uuuuu ������
62

32

 
(3.65) 

⋅⋅⋅+∆+∆+= ∆−∆−∆− ttttttt
t

t uuuu �������
2

2

 
(3.66) 

 

Newmark used a truncated version of the previous equations written in the following form 

 

ttttttttt
tt

t ∆−∆−∆−∆−
∆+∆+∆+= uuuuu ������
62

32

β  
(3.67) 

ttttttt
t

t ∆−∆−∆−
∆+∆+= uuuu �������
2

2

γ  
(3.68) 
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If the acceleration is assumed to be linear within the time step, the following relation may be 

established: 

t
ttt

t ∆
−= ∆−uuu
����

���  
(3.69) 

 

Therefore, If the preceding equation is substituted into equations 3.4 and 3.5, we obtain the 

Newmark equations in standard form 

 

tttttttt ttt uuuuu ����� 22

2
1 ∆+∆�

	



�
�


 −+∆+= ∆−∆−∆− ββ  
(3.70) 

( ) tttttt tt uuuu ������ ∆+∆−+= ∆−∆− γγ1  (3.71) 

 

The previous equations were used by Newmark iteratively, for each time step, for each 

displacement degree of freedom. 

 

Depending on the values adopted for the parameters γ  and β , different methods can be 

developed. 

 

γ  β  Integrating methods 

2
1

 
4
1

 Average acceleration (or trapezoidal rule) Unconditionally stable Implicit 

2
1

 
6
1

 Linear acceleration Conditionally stable Implicit 

2
1

 
12
1

 Fox-Goodwin Conditionally stable Implicit 

2
1

 0  Central difference  conditionally stable Explicit 
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Its was in 1962 that Wilson (1962) formulated the Newmark method in matrix notation, adding 

stiffness and mass proportional damping and eliminating the need for iteration by introducing 

direct solution of equations at each time step. 

 

( ) tttttttt tt ∆−∆−∆− ��
	



��
�


 −−
∆

−−
∆

= uuuuu ����� 1
2
111

2 βββ
 

(3.72) 

( ) tttttttt t
t ∆−∆−∆− ��
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 −∆−��
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�


 −−−
∆

= uuuuu ���� 1
2

1
β
γ

β
γ

β
γ

 
(3.73) 

 

Writing the above equations in compact format, 

 

( ) tttttttt aaa ∆−∆−∆− −−−= uuuuu ����� 320  (3.74) 

( ) tttttttt aaa ∆−∆−∆− −−−= uuuuu ���� 541  (3.75) 

 

The constants 0a  to 7a  are shown on the following table.  
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1
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a
∆

=
β
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�
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( )γ−∆= 16 ta  ta ∆= γ7   

 

For the average acceleration method ( 2/1=γ  and 4/1=β ) the above constants will be 
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The linear equation of motion can be rewritten using equations (3.9) and (3.10) allowing the 

displacement at instant t  to be obtained from the unknown displacements, tu . 

 

( )
( ) ( )ttttttttttt

tt

aaaaaa

aa

∆−∆−−∆−∆−∆− +++++

+=++

uuuCuuuM

FuKCM
������ 5411320

10
 

(3.76) 

 

Organizing the equation differently, we finally arrive to 

 

eff
tteff FuK =  (3.77) 

 

With, 

( ) ( )ttttttttttttt
eff
t aaaaaa ∆−∆−∆−∆−∆−∆− ++++++= uuuCuuuMFF ������ 541320  (3.78) 

 

And 

KCMK ++= 10 aaeff  (3.79) 

 

The method is conditionally stable if 
2
1≥γ ,

2
1≤β  and 

βγ −
≤∆

2

1

maxw
t , 

 

being maxw the maximum frequency of the structure. 

 

The Newmark method is unconditionally stable if 

2
1

2 ≥≥ γβ  
(3.80) 
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If the analysis is to be performed incrementally, (e.g. using a Newton-Raphson solution 

algorithm), the equation (3.13) can be rearranged using the following relation 

 

tttt uuu ∆+= ∆−  (3.81) 

 

( ) ( ) ( ) tttttttttttttt aaaaaa ∆−∆−∆−∆−∆− −++++=∆++ uKuuCuuMFuKCM ������ 543210  (3.82) 

 

Organizing the equation differently, we finally arrive to 

 

t
Int

t
eff
tt

eff
t RFFuK −=−=∆  (3.83) 

 

With, 

( ) ( )ttttttttt
eff
t aaaa ∆−∆−∆−∆− ++++= uuCuuMFF ������ 5432  (3.84) 

 

�== ∆−
V

T
ttt

Int
t dv�BuKF  (3.85) 

 

teff aa KCMK ++= 10  (3.86) 

 

The linear system of equations (3.83) allows the displacement at instant t  to be obtained from 

the unknown incremental displacements, tu∆ . 
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The flowchart associated with incremental Newmark implicit time integration algorithm is 

presented below  

Initializes variables

Loop over time steps

Computes the effective consistent tangent stiffness matrix 

Computes the consistent tangent stiffness matrix 

Iteration Loop to clear residual

Computes the effective load vector

Computes iterative displacement
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( )

ttt

tttttttt

tttttttt

aaa
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3.8.3 Numerical example - Cantilever under gravity load 

3.8.3.1 Analytical solution 

Let us consider the following a cantilever beam with a distributed mass per unit of length, m , 

Young modulus, E , and moment of inertia, I . 

 

L

m g

m, EI ,g

L

m*g

EI
m*

ϕ(x)

u(t)

 
 

Figure 3. 10  – Cantilever under gravity load 
 

Assuming that the gravity is going to be the only load, acting on the cantilever, the non 

dimensional deformed shape function and derivatives are given by the expressions: 
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4
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L
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(3.89) 

 

The problem can be reduced to a single degree of freedom problem (SDOF) using the 

correspondent expressions Clough (1993) to obtain the equivalent SDOF properties. 
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Hence, we obtain 

Lmm
405
104* =  

(3.94) 

 

3
*

5
16

L
EI

k =  
(3.95) 

31
*

5
16

L
EI

ac =  
(3.96) 

gm
L

p ⋅⋅=
15
6*  

(3.97) 

 

The natural frequency of the system is given by 

Hence, we obtain 

4*

*
*

13
162

Lm
EI

m
k

w ==  
(3.98) 

 

 

If the gravity load is to be applied suddenly, the response of the system is ruled by the differential 

equation of the dynamic equilibrium, 

 

**** )()()( ptuktuctum =++ ���  (3.99) 

 

The response of the SDOF system is given by, 
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(3.100) 

 

The undamped response ( 0* =c ) the SDOF system is given by, 
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*
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3.8.3.2 Numerical solution 

Let us consider the following cantilever under sudden gravity load (Figure 3.11). 
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28

 
 

 
 

Figure 3.11 Cantilever under sudden gravity load – FEM mesh 
 

The parameters used are summarized on the following table. 

 
Case Elem E [MPa] ν [1] γ [kN/m3] Material and Kinematical model ∆t [s] 

FEM I 10 100 0.0 25.0 Large strain hyperelastic (Hencky) 0.001 

 

In the (Figure 3. 12) we can see the response of the system in terms of vertical displacement of 

the tip node. 
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Figure 3. 12 Cantilever under sudden gravity load – Tip displacement  FEM & Analytical 
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4 Discrete element method 

4.1 Introduction 

In the last years many different approaches were developed, having the common goal of 

modelling the physical behaviour of dynamical problems as accurately as possible. 

 

The Discrete Element Method uses simple shaped elements (discs and spheres) to model the 

physical behaviour of granular and solid materials. Although issues related with contact tend to 

restrain researchers from moving in that direction, elements with more complex geometry may be 

adopted Mustoe (2000). 

 

These elements (discrete elements) can be rigid or deformable depending on the problem to be 

analyzed. 

 

When deformable elements are adopted, the Finite Element Method can be used to model the 

behaviour at element level and the Discrete Element Method to Model the evolution in time and 

the contact detection. 

 

The analysis relies on three fundamental computational steps. The first one is the contact 

detection, where the possible contacts between each element and other elements or boundaries 

are evaluated. The second step involves the contact force evaluation between colliding elements 

or boundaries. The third and last step is the integration of the equations of motion, where the new 

values for displacements and velocities of each element are evaluated from the information of the 

previous time step. 

 

A long way has been run done since the first works of Cundall (1978) with new and enhanced 

interaction models and contact detection algorithms coming up every day. 
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4.2 DEM Algorithm 

With the objective of giving an overview of the most important steps associated with a typical 

Discrete Element Method problem, the typical flowchart associated is show in Figure 4.1. 

 

Updates (for each element)
- Position u 
- Velocity v

Search for contact between:
- Elements
- Elements and boundaries

Outputs results

End

Initializes regions

Loop over time steps

Updates the region list

Input all Data

Begin

 
�

Figure 4.1 Typical flowchart for a Discrete Element Problem����

 

From the flow-chart above it should be underlined that the most CPU absorbing procedure is 

without any doubt the search for contact between elements. This matter will be addressed further 

along this chapter.  
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4.3 Governing equations 

The governing equations of the motion of each element of the discrete system derive from 

Newton’s second law. 

 

x

m
u

yu

xyθ xF

yF

GM
m

 
Figure 4.2 Dynamic forces acting on a particle element 

 

Hence, to guarantee the dynamic equilibrium of a particle (element) at a certain time step, the 

following conditions must be satisfied 

 

( ) �= xFtxm ��  (4.1) 

 

( ) �= yFtym ��  (4.2) 

( ) �= GG MtI θ��  (4.3) 

 

Where, m , is the mass of element and, GI , is mass moment of inertia of the element. 

 

The quantities� xF  and � yF  represent the total forces acting on the element while � GM  

is the total moment in turn of the centroid. 
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4.4 Integration in time 

The three differential equations shown in point 4.3 must be integrated to obtain evolution in time 

of the discrete system constituted by the set of discrete elements. 

 

There are many different techniques to numerically integrate differential equations in time, in 

space and in time and space. Nevertheless, they can be divided into two main groups: 

 

� Implicit Methods 

� Explicit Methods 

 

The fist group includes strategies like the Runge-kutta (Backward Euler) and Newmark, while 

within the second group it can be mentioned the Forward Euler integration and Leapfrog 

integration. 

 

The major advantage of the implicit methods is the better convergence features these techniques 

usually have to offer. The major drawback comes from the fact that for large systems the solution 

of the linear system of equations involved becomes too heavy, in what concerns memory and 

CPU needs. 

 

The explicit methods are exempted of the solution of a set of linear equations. This would grant 

them increased speed, when compared with the implicit methods. This favourable effect is, 

somehow, reduced by the need of smaller time steps in order to assure the stability of the 

analysis. 

 

Most Discrete Element Method problems often involve a very large number of elements. 

Therefore, the Explicit Methods are usually more attractive within this context. 
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4.4.1 Leapfrog integration 

Considering the Leapfrog central difference scheme, the position angular velocity and 

acceleration of each element can be updated in an asynchronous fashion as follows 

u0 u1 u2 u3

u1/2 u3/2 u5/2

t0 t1/2 t1 t3/2 t2 t5/2 t3

∆t
∆t

 
Considering the following approximation for the second derivative 

t
uu

u
nn

n

∆
−=

−+ )
2
1

()
2
1

(
��

��  

(4.4) 

 

, and substituting equation (4.4) into equation (4.1) we can get an expression to update the linear 

velocity of the element. 
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(4.5) 

 

In a similar way, the position of the element will be given by 

tuuu
nnn ∆+=

++ )
2
1

()()1(
�  

(4.6) 

 

Analogously, the expressions to update the angular velocity and position can also be found 
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4.4.2 Time step definition 

4.4.2.1 Introduction 

The definition of the appropriate time step, t∆ , is essential when using explicit methods to 

integrate the equations of motion. 

 

One popular concept used within this context is the critical time step, crT . When using a Leap-

frog scheme this is be given by 

 

0

2
w

Tcr =      with     
m
k

w =0  (4.9) 

 

To assure unconditional convergence the following relation must be observed. 

 

crcr Tt ≤∆  (4.10) 

 

Cundall (1978) suggested that the effective time step should be a fraction of the critical time. 

Some other authors advance 10% as the recommended time step for certain types of problems. 

 

crtt ∆⋅≤∆ β      with     20.010.0 ≤≤ β  (4.11) 

 

The accumulated experience of many researchers has shown that the definition of the 

appropriate time step is, in most cases, problem dependant. 
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4.4.2.2 System stability 

The total energy of a particle at a certain time step, excluding damping and friction, is given by, 

 

222

2
1

2
1

2
1 δθ nT kmghImvE +++=  (4.12) 

 
, where m is the mass of the particle, v  is the translational velocity , I  is the mass moment of 

inertia with respect to gravity centre, θ  is the rotational (angular) velocity, g  is the gravitational 

acceleration, nk  is the contact normal stiffness and δ  is the penetration between particles. 

 

The stability of the integration method can be assessed monitoring the evolution of numerical 

value of the total energy, TE  , along several time steps. 

 

Let us consider the following box, containing 12 discs with various sizes and equal elastic and 

volumetric properties. All the particles are subjected only to the gravity force. 

 

In order to assess the sensibility of the integration algorithm, three different time step sizes were 

used. 

 

 

 

 

 

 
 

Disc  R [m] Weight [kN/m3] Kn [kN/m] Friction 

1 0.100 75.0 6000 0.0 

2 0.075 75.0 6000 0.0 

3 0.050 75.0 6000 0.0 

4 0.085 75.0 6000 0.0 

5 0.035 75.0 6000 0.0 

Test ∆t [s] t_max [s] No. time steps 

1 0.000500 4.0 8000 

2 0.000250 4.0 16000 

3 0.000125 4.0 32000 

Figure 4.3 Test box geometry and material properties 
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The following graph (Figure 4.4) illustrates the response of the system for two different time step 

sizes. 
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Figure 4.4 Stability of the total energy of the test box 

 
It can be observed that the stability is clearly enhanced when a smaller time step is chosen. 
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Figure 4.5 Stability of the total energy of the test box. Detail 
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4.5 Contact detection  

One of the most important operations within the context of the discrete element system is the 

detection of the contact between elements or between elements and boundaries. 

 

Although some problems involve a large number of boundaries, in the majority of the cases, the 

most expensive operation, in what concerns the computational efficiency, is the detection of the 

contact between elements. 

 

If the contact search is extended to all elements, the number of operations needed increases with 

the following rate: 

 

( )1. −≈ NNNOPERATIONS   (4.13) 

 

, where N  represents the number of elements involved in the analysis. 

 

This means that, for problems involving large number of elements, the computational time 

increases proportionally to 2N . 

 

Along the years, many strategies were developed to effectively reduce the growth rate of the 

number of operations needed to detect the contact between elements. 

 

One of the most popular algorithms employed to reduce the number of operations needed to 

detect the contact is NBS contact detection algorithm Munjiza (1998). 

 

In the following point, another one of these strategies, proposed by the author of this work, will be 

explained and detailed. 
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4.5.1 Sub-division algorithm 

This technique consists in the division of the envelope of the problem’s domain into many sub-

domains or regions (Figure 4.6). 
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Figure 4.6 Contact detection zones 

 

The second major step consists in finding which elements belong (or are intersected) by each 

region. 

 

Once this is done, the search for colliding elements will be restricted to the elements that belong 

or cross each region in a specific instant of time (Figure 4.6). 

 

Nevertheless, it should be emphasized at this point that the use of a large number of regions will 

ultimately lead to an increase of the computational time. 

 

This is related to two main factors, being the first one the amount of time needed to find which 

elements belong to each region. The second drawback comes from the fact that as many regions 

are adopted as many cases of elements that will belong to more than one region will occur 

(darker discs in Figure 4.6). 
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In certain geometries, the regions will cover several void areas. If information is provided on the 

geometry of the void areas, the regions contained within can be excluded from the contact search 

(Figure 4.7). 
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Figure 4.7 Zones with voids 

 

Depending on the complexity of the geometry of the problem to be analyzed, it might be worthy 

the definition of many different void regions. This way, it becomes possible to cover the portions 

of the domain where there is no need for detection of collisions between elements. 

 

In the above example (Figure 4.7) it can be observed that the void areas correspond to circa 63% 

of the total area of the problem. 
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In the (Figure 4.8) it can be seen a comparison between the performance of the subdivision 

method and the full element search method for a simple problem. 
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Figure 4.8 Grid method performance 

 

It should be emphasized that the performance of the grid sub-division will depend on various 

factors related to the problem in question, such as the distribution of the elements over the 

domain on each time step. 

 

Nevertheless, the use of this technique will always lead to major savings of CPU (Central 

Processing Unit) time, comparing with the full search approach. 

 

Other techniques may be employed with the goal of taking advantage of the available information 

about the elements surrounding a certain element. Example of this is the cluster approach often 

used when modelling solid structures with Discrete elements. 
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4.5.2 Contact forces between elements 

The contact between two circular elements (discs) can be determined from the following relations 

Nazeri (2001): 
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Figure 4.9 Contact between two elements 

 

 

22 )()( ijij yyxxd −+−=  - Distance between the centroids of the elements 
(4.14) 

ji RRd −−=δ  - Penetration between elements (4.15) 
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=  - Vector tangential to the contact surface 

(4.17) 

 



Chapter 4. Discrete element method 4.15 
 

The velocity of each element in the contact point, P, is given by 

 

iii
P
i rwvv

��� ×+=  (4.18) 

jjj
P
j rwvv

��� ×+=  (4.19) 

 

, where the entities, ir
�

, and , jr
�

, are the position vectors of the contact point, relating to centroid 

of the elements i and j. 

 

Hence, the relative velocity between the two elements is 

 

j
p

i
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P
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��� −=  (4.20) 

 

The projections of the relative velocity in the normal and tangential direction are given by 
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 (4.21) 

( )( ) ssvvv j
p

i
p

P
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 (4.22) 

 

These quantities will play an important role in the quantification of the friction forces between 

particles and between particles and the boundary. 
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4.5.3 Contact forces between element and boundary 

The contact between a circular element (disc) and the boundary can be defined as following 

Nazeri (2001): 
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Figure 4.10 Contact between one element and the boundary 
 

)( 12 xxdx −=  - Horizontal projection of the boundary line (4.23) 

)( 12 yydy −=  - Vertical projection of the boundary line (4.24) 

22 dydxd +=  - Length of the boundary line (4.25) 

( ) ( )11 yysyxxsxdl pp −+−=  - Distance from the centroid to the boundary  (4.26) 

iRdl −=δ  - Penetration in the boundary (4.27) 

j
d
dx

i
d
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n ˆˆ +−=�  - Vector normal to the boundary (4.28) 

j
d
dy

i
d
dx

s ˆˆˆ +=  - Vector tangent to the boundary (4.29) 



Chapter 4. Discrete element method 4.17 
 

The detection of the relative position of the intersection point between the element and the 

boundary is performed through the parameter λ . 

 

2
11 )()(

d
yydyxxdx PP −+−=λ  

(4.30) 

 

If 10 ≤≤ λ  then the element is colliding with the boundary segment defined by the nodes 

),( 11 yx  and ),( 22 yx . 

 

It should be noticed there are two special cases that deserve special attention. 

 

When λ  approaches 0 or 1 (Collision with the extreme points of the boundary) a numerical 

problem arouses when computing the normal vector and the tangential vector. 

 

To avoid this, virtual circle with a radius equal to iR⋅001.0  should be assumed to exist at each 

extreme of the boundary line (Figure 4.10). This way, the contact with the boundary line edge will 

be transformed into a contact between the real element and an artificial element of small radius. 

 

The velocity of each the element in the contact point with boundary, P, is given by 
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, where ir

�
 is the position vector of the contact point relating to centroid of element i .In this case, 

bv
�

is the velocity vector of the boundary line. 

 

Hence, the relative velocity between the element and the boundary is 
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The projections of the relative velocity in the normal and tangential direction are given by 
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4.6 Contact forces  

The contact forces between two particles or between a particle and the boundary can be 

determined accordingly to the following spring and dashpot model Nazeri (2001). 
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Figure 4.11 Contact forces model 
 

These contact forces can be divided into its normal and tangential (shear) components (Figure 

4.12). This division is justified by the fact that the material behaviour in the normal direction is 

often distinct from the one observed in the shear direction. 
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Figure 4.12 Contact forces between elements 
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4.6.1 Normal contact forces 

The normal component of the elastic contact force nF , can be obtained from the spring model 

approach. 

 

In this model it is assumed that the elastic force will be proportional to the penetration, δ , 

between the elements (or between the element and the boundary) and the stiffness of the 

contacting surfaces. 

 

nkF nn ˆδ=
�

 (4.36) 

 

4.6.1.1 Linear spring model (Hooke model) 

One of the simplest ones is the linear spring model. 

 

( )MaterialFkn =  (4.37) 

 

4.6.1.2 Hertz nonlinear spring model 

Other classical model is provided by the Hertz theory that is based on the assumption of elasticity 

in the contact between elements. 

 

Hence, the parameter nk  can be defined, accordingly as 
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(4.38) 

 

Where, 1E , 2E , 1υ , 2υ  are the elastic properties of the contacting elements and r is a function of 

curvature of the contacting bodies. 
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4.6.1.3 Normal Damping forces 

The inelastic part of the contact forces between elements (or element and boundary) can be 

modelled with a dashpot model. 

 

The viscous damping force in the normal direction can be computed from. 

0δ
��

nc CF =  (4.39) 

 

, where, 0δ
�

is the normal component of the relative velocity between elements, given by 
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The damping coefficient in the normal direction nC can be evaluated from the critical damping 

coefficient, crC  introduced by Cundall (1974) and Taylor (1989). 
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Accordingly to Mustoe and Huttelmaier (1992), the viscous damping between two elements can 

be given by 
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(4.42) 

 

, where e is the restitution factor. 

 

In case of collision with boundary the same coefficient is given by 
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4.6.2 Shear contact forces 

The tangential (shear) component of the elastic contact force tF , can be quantified in many 

different ways, depending on the friction models adopted. 

 

4.6.2.1 Coulomb friction model 

According to this model the value of the friction force is given by 

 

skF ttt ˆδ=
�

 (4.44) 

 

, where, tk is the shear stiffness and tδ is the shear displacement between the elements in 

contact or between the element and the boundary. 

 

The value of tF
�

 cannot be higher than the slip friction force, Slip
tF
�

. When this happens the two 

discs will simply slip relative to each other and the force tF
�

 will be kept equal Slip
tF
�

. 
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, where µ  is the friction between the contacting surfaces. 

δ
t

F
Slip

t

Ft

 
 

Figure 4.13 Friction contact force 
 

 



Chapter 4. Discrete element method 4.22 
 

4.7 Examples 

4.7.1 Hopper feeder 

4.7.1.1 Introduction 

This example exemplifies a gravity flow a set of 1040 elements of multiple sizes through a hopper 

feeder with the following shape (Figure 4.14). The boundaries of the problem were defined with 

the help of 13 lines. 

 

 
 

Figure 4.14 Flow through a hopper feeder 
 
Two situations were analyzed, corresponding to different values of the friction between particles. 

4.7.1.2 Material properties 

The properties considered for each type of particle element for both simulations are summarized 

in the following table. 

 
 Type Radius [m] Weight [kN/m3] e (restitution) [1] Friction [1] Kt=Kn [kN/m] 

1 0.050 77.0 0.30 0.0 5000 

2 0.045 77.0 0.30 0.0 5000 

3 0.040 77.0 0.30 0.0 5000 

4 0.035 77.0 0.30 0.0 5000 

Case I 

5 0.030 77.0 0.30 0.0 5000 

1 0.050 77.0 0.30 0.50 5000 

2 0.045 77.0 0.30 0.50 5000 

3 0.040 77.0 0.30 0.50 5000 

4 0.035 77.0 0.30 0.50 5000 

Case II 

5 0.030 77.0 0.30 0.50 5000 
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4.7.1.3 Geometry definition 

The domain was divided in one hundred and five regions with two distinct void areas (Figure 
4.15). 

 
Resulting from considering the void areas, the final number of regions to be scanned for inter-

element collision is reduced to eighty one. 
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Figure 4.15 Flow through a hopper feeder. Regions and voids [m] 
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4.7.1.4 Results  

In the following pictures the results for different time steps are shown. The color of each particle is 

a function of its original vertical coordinate. This way, the mixing between particles can be easily 

monitored. 

(µµµµ=0.0) (µµµµ=0.50) 
  

 
t=0.50 s 

 
t=2.00 s 

  

t=7.50 s 

  
t=21.00 s 

 
Figure 4.16 Flow at different time steps  
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The following images show the effect of the friction between particles in the final layout of the two 

set of elements. 

 

  
 

Figure 4.17 Detail of final layout of particles 
 
In the following chart we can see the evolution of the total energy of the system along the flow 

through the feeder. 
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Figure 4.18 Flow through a hopper feeder – Total energy  

 
The noticeably quicker conversion of the kinetic energy back to potential energy is evident in the 

frictionless model, due to the easier flow of the particles through the feeder  
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4.7.2 “U” Channel flow 

This example tries to model the flow of a fluid through a set of 1000 particles of multiple sizes 

trough a “U” shaped channel (Figure 4.19). 

 
Two simulations were performed. The first one (Case I) corresponds to a frictionless flow of 

particles whereas the second one (Case II) to a flow of particles with high friction. In both cases 

some damping was considered. 
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Figure 4.19 Flow through a “U” channel [m] 
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4.7.2.1 Material properties 

The properties considered for each type of particle element in the two simulations are 

summarized in the following tables. 

 
 Type Radius [m] Weight [kN/m3] e (restitution) [1] Friction [1] Kt=Kn [kN/m] 

1 0.060 255.0 0.50 0.0 2500 

2 0.070 255.0 0.50 0.0 2500 

3 0.080 255.0 0.50 0.0 2500 

4 0.090 255.0 0.50 0.0 2500 

Case I 

5 0.100 255.0 0.50 0.0 2500 

1 0.060 255.0 0.50 0.50 2500 

2 0.070 255.0 0.50 0.50 2500 

3 0.080 255.0 0.50 0.50 2500 

4 0.090 255.0 0.50 0.50 2500 

Case II 

5 0.100 255.0 0.50 0.50 2500 
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4.7.2.2 Geometry definition 

The domain was divided into 225 regions as shown in Figure 4.20. 

 
Resulting from considering the void areas, the final number of regions to be scanned for inter-

element collision is reduced to 82. 
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Figure 4.20 Flow through a “U” channel. Regions and voids [m] 
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4.7.2.3 Results 

The following images illustrate some snap-shots of the particle flow inside the “U” channel for 

both cases studied. 

(µµµµ=0.0) (µµµµ=0.50) 

  
t=0.80 s 

  
t=1.00 s 

  
t=1.40 s 

  
t=2.40 s 

 

Figure 4.21 Flow through a “U” channel – Results (I) 
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(µµµµ=0.0) (µµµµ=0.50) 

  
t=5.00 s 

  
t=6.00 s 

 
Figure 4.22 Flow through a “U” channel – Results (II) 

 
The effect of the inter-particle friction can be observed in the comparative results shown above in 

pictures above. 

 

The frictionless flow tends to cease after some seconds with the particle level being 

approximately the same on both sides of the pipe. This is in accordance with the hydrostatic 

equilibrium of a fluid. 

 

For the high friction flow it can be observed the blockage effect created both by the friction 

between the particles and by the friction between the particles and the boundaries. 
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Figure 4.23 Flow through a “U” channel – Total energy  
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5 Discrete approach of continuum 

5.1 Introduction 

Being the discrete element method a numerical approach that has its roots in problems where the 

term “continuum” surely does not seem to apply, in the recent years, many problems traditionally 

belonging to the continuum mechanics field are being solved using discrete approaches Griffiths 

(2001) and Tavarez (2006). 

 

The seduction for the use of this strategy is far more intense when dealing with problems on 

which there is a change of state involved. Example of these types of problems is the real 

behaviour of a concrete structural member, where a physical separation occurs in the vicinity of 

the cracked zones. This can assume vital relevance when simulating impact problems where 

complete separation between members or regions is a reality. 

 

As such, a proper comparison between the continuum mechanics solutions and the ones 

obtained using a discrete element formulation urges to be performed. 

 

This chapter tries to establish comparisons between the results obtained via finite element 

method and discrete element method when modelling simple structural problems undergoing both 

small and large strains. 

 

Different strategies are proposed to model the behaviour of the continuum with discrete elements, 

being emphasized the most relevant scaling parameters involved. 

 

A model to simulate the material nonlinearity (plastic behaviour) is also suggested, accompanied 

by comparative numerical examples. 

 

In the last part of this chapter the potential performance of bonded discrete elements when 

modelling crack path is tested against benchmark examples. 
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5.2 Discrete modelling of continuum 

5.2.1 Geometry  

A simple approach to the problem can be to model the solid domain of the problem using clusters 

of discrete elements with circular geometry bonded together with tensile springs. 

 

Let us consider a domain fulfilled with discrete elements. The first step will be to detect the 

elements in the proximity of each element in order to form a set of clusters of discrete elements ( 

Figure 5.1). 
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Figure 5.1 – Domain geometry. DEM Cluster definition 
 

When detecting the elements surrounding each element, a tolerance must be defined, for 

instance, as a function of the radius of the element ( ii RRtoler ∆+= ).This procedure aims to 

define the threshold between the elements that should be considered bonded or not with the 

element in question. 

 

It becomes evident that the size of each cluster will heavily depend on how compactly are the 

DEM arranged. 

 

While in problems where the particle size is constant, obtaining a closed packed assembly is 

easy, when dealing with multi sized particle arrangements the same will not aplly. 

 



Chapter 5. Discrete approach of continuum 5.4 
 

Let us consider a rectangular cell of discrete elements when subjected to an expansion or 

contraction in the axial direction springs (Figure 5.2). 

 

B

H
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H

 

H

B''

 
a) Initial mesh b) Contraction c) Expansion 

 
Figure 5.2 – Square cell of discrete elements 

 
The deformation of the cell can be modelled as follows. 

 

The discrete elements will behave as discs when the distance between two elements decreases 

and they collide and overlap (Figure 5.2 b). 

 

When the distance between two elements is increasing, mobilizing tensile forces, they will bond 

together due to the stiffness provided by springs (Figure 5.2 c). It is worth mentioning here that 

these springs can be given linear or nonlinear material behaviour. 

 

In order to preserve the original mass of the problem, a corrected volumetric weight, *γ , has to 

be defined, to take into account the existing voids between discrete elements. 

 

Generically, *γ , will be given by 

ELEMELEM

REAL

Voln
Vol
⋅
⋅= Realγγ *  

(5.1) 

 

If disc elements are to be used, we will have 

2
*

Rn
Vol

ELEM ⋅⋅
⋅=

π
γγ REALReal  

(5.2) 

 

, where, R , is the radius of the each disc element used. 
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5.2.2 Contact forces 

5.2.2.1 Conceptual model 

The most common way to model the contact forces between elements, in linear elastic behaviour, 

is illustrated in (Figure 5.3). 

 

K n

C

R

mi

K s R

mj

XG

YG

XG

YG

u

u L

α

 2R

i

j

u

u

2

L
1

L
5

L
4

u

u G
2

G
1

u

u G
5

G
4

u G
3

u G
6

u L
3

=

u L
6

=

 
 

Figure 5.3 – Contact forces between elements – conceptual model 
 
The interaction between any two disk particles, belonging to a hexagonal cluster (Figure 5.1), 

might be described as a virtual beam element of length, R2 . 

 

Analogously to the Classical Beam Theory, Chandrupatla (1997), a local stiffness matrix, LK , 

can also be derived for each pair of bonded particles, Griffiths (2001). 
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The interaction forces between the particles “i” and “j” in local coordinate system will be given by 
 

LLL dKF ⋅=  (5.4) 

 
Considering that, within the Discrete Element Method context, the interaction forces should be 

given in the global coordinate system, the following conversion can be employed. 

 

GGG dKF ⋅=  (5.5) 

 
The entities referred above are given by 

 

LG dTd ⋅=  

TKTK ⋅⋅= L
Tr

G  
(5.6) 

 

The transformation matrix between the local and the global coordinate system, T , is given by 
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(5.7) 

 

Using the relation s described before, we can obtain the global interaction forces between any 

two particles: 
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5.2.2.2 Parameter correspondence 

From the preceding point becomes evident the need for the establishment of a scaling technique 

between the parameters describing the elastic properties of the continua and their counterparts in 

the discrete model. 

 
According to Griffiths (2001), for plane strain problems, the shear and normal springs can be 

related with a set of elastic properties defining of the continuum ( E  and ν  ) as follows  

 

( )( )
( )

( )( )νν
ν

νν

211
41

3
1

2113
1

−+
−=

−+
=

E
k

E
k

S

n

 (5.9) 

 
The damping, c , can be also defined as a function of the properties of the continuum or, from 

experimental data. 

 

More recently, other authors like Tavarez (2006), have proposed other alternative expressions for 

plain strain problems. 
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1

1

*

2
* E

E

 (5.10) 

 
These last two are independent of the radius of the element and provide very good results in 

terms of displacements, for close packed assemblies of elements. 
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5.3 Stress recovery 

The stresses within the continuum can be approximated using similar technique to the one 

involved in the traditional finite element approach. Hence, the internal stresses will be computed 

from the displacement field, u , provided by the Discrete Element Method approach. 

5.3.1 Virtual mesh generation 

The first step consists in generating a virtual triangular finite element mesh whose nodes 

correspond to the centres of each circle discrete element. Each three discrete elements will 

generate one triangular finite element (Figure 5.4). 

 

L

H
1 2

3

Discrete element Finite element Gauss point
 

 
Figure 5.4 – Stress recovery. Triangle mesh definition 

 

The stresses may then be computed at the Gauss points of the virtual finite elements in a similar 

fashion to the one used within the context of FEM. 

 

When generating the FE mesh, special care has to be employed to assure that the nodes 

defining each element are oriented counter-clockwise. 
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5.3.2 Stress computation 

Let us consider the displacement field, u , provided by the DEM for a certain time step , nt . The 

correspondent stresses can be obtained depending on the strain measure adopted and material 

model chosen. 

 

For large strains, the kinematics is described from the deformation gradient, F . 

 

If the Neo-Hookean hyperelastic material model is to be adopted, the following relation between 

the deformation gradient and the Kirchoff stresses can be established 

 
( ) ( ) IIB� Jlnλµ +−=  ,with trFFB =  and  )det(F=J  (5.11) 

 
, with B being the left Cauchy-Green Tensor and , F , the deformation gradient defined in Chapter 

2. 

 

The real or Cauchy stresses, � , can be obtained from the Kircchoff stresses  

 

J
1⋅= ��  

(5.12) 

 

Considering the fact that the virtual mesh is made of three nodded triangles, the stresses will 

computed at the gravity centre of the element, thus, the same location adopted by the one point 

Gaussian integration rule. 

 

Within the context of and explicit integration in time, the use of single Gauss point translates in 

major advantages in terms of computational time. 
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5.4 Plasticity 

5.4.1 Introduction 

The modelling of the material non linearity of the medium is of great interest for applicability of the 

Discrete Element Method to real problems. As such, a simple procedure is presented here to 

model the behaviour of the medium when undergoing stresses beyond the limits of elasticity. 

 

5.4.2 Reduced stiffness spring model 

5.4.2.1 Introduction 

Let us recall the three discrete element patch from which each virtual finite element was 

previously defined (Figure 5.4). 

 

When, for a certain time step, nt , the effective stress, effσ , computed accordingly to the strategy 

explained in point 5.3.2.2 lays above the yielding limit of the material, Yσ , its value is reduced to 

Yσ  (If no hardening is considered). All the remaining stresses are also scaled down. 

 

As a consequence, the stiffness of the springs bonding the discrete elements surrounding the 

virtual finite element will also have to be reduced. 

 

The reduction of stiffness suffered by a spring connecting any pair of elements “i” and “j” is then 

computed accordingly to: 

 

2

jnode
orYield_fact

inode
orYield_fact

Kn
ijnode

Kn
+

⋅=  
(5.13) 

 
, where Kn  is the normal stiffness of the spring linking inode  and jnode  and 

inode
orYield_fact  is 

an non dimensional factor that measures the degree of yielding between inode  and jnode  
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5.4.2.2 Yield factor 

The yield factor associated with each node, “i”, is computed from the average between all the 

elements connected to it, as follows (Figure 5.5) 

 

en_elem_nod

orYield_fact

i
orYield_fact

en_elem_nod

j
j�

=−= 10.1  

(5.14) 
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Figure 5.5 – Yield factor for a typical element 
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5.5 Crack path 

5.5.1 Introduction 

The modelling of the physical material separation, usual preceded by cracking, is an essential 

feature when trying to follow the behaviour of a brittle material. 

 

Many different approaches have been proposed to detect the crack initiation and progression 

including the ones based on a tensile force limit Donze (1997), Masuya (1994), Zubelewicz 

(1987), Bolander (1997), Brara (2001), Mishra (2001) and Sawamoto (1998). 

 

5.5.2 Crack modelling 

5.5.2.1 Introduction 

The crack formation and progression in this work was modelled based on the two main physical 

entities. The detection of the crack initiation relies on the average tensile stress between 

elements (Figure 5.6), whilst the crack progression is driven by the apparent strain and fracture 

energy release, Gf (Figure 5.8). 
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Figure 5.6 – Stress computation 
 

The average stress between two elements, for the purpose of crack initiation, detection can be 

computed from: 

R
n

F

n 2
=σ  

(5.15) 
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When dealing with elements with different sizes the following procedure may be used instead 

(Figure 5.7)  
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Figure 5.7 – Stress computation with different sized elements 
 

In this case the average stress between elements will be given by the division of the interaction 

force between elements by the average diameter of the elements. 
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(5.16) 

 

The crack will initiate when the normal tensile stress,
n

σ , reaches the critical value, 
crit

σ . The 

crack progression or propagation will be then be ruled by the fracture energy diagram, Gf. 
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Figure 5.8 – Crack propagation scheme 
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5.6 Examples 

5.6.1 Cantilever under gravity load 

5.6.1.1 Analytical solution 

Let us consider the following a cantilever beam with a distributed mass per unit of length, m , 

Young modulus, E , and moment of inertia, I . 
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Figure 5.9 – Cantilever under gravity load 
 

The natural frequency of the system is given by 

Hence, we obtain 

4*

*
*

13
162

Lm
EI

m
k

w ==  
(5.17) 

 

 

If the gravity load is to be applied suddenly, the response of the system is ruled by the differential 

equation of the dynamic equilibrium, 

 

**** )()()( ptuktuctum =++ ���  (5.18) 

 

As seen in Chapter 3, the response of the SDOF system is given by, 

[ ])cos(1)( *

*

wte
k
p

tu wtξ−−=  

mw
c

c
c

Cr 2
==ξ  

(5.19) 

 

The undamped response ( 0* =c ) the SDOF system is given by, 

[ ])cos(1)( *

*

wt
k
p

tu −=  
(5.20) 
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5.6.1.2 Numerical DEM & FEM solution 

In order to assess the feasibility of the discrete element method in solving this problem both in 

small and large strains, two sets of discrete elements and one mesh of eight nodded finite 

elements were used to model the cantilever (Figure 5.10). 
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mKgm /2.583=  

 
3/25 mkN=γ  

 
 

Figure 5.10 - Cantilever under sudden gravity load –FEM & DEM Meshes 
 

The gravity load was applied on each discrete element as a vertical force whose magnitude 

comes from the area of each element times the volumetric weight. 

 

Several numeric tests were conducted, starting with a sensibility analysis of the effect on the size 

of the time step adopted. 
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The following tables contain the relevant information on the numerical analysis performed, both 

with Discrete element method and Finite element method. 

 
Case Elem E [MPa] ν [1] γ [kN/m3] Material and Kinematical model ∆t [s] 

FEM I 40 100 0.25 25.0 Large strain hyperelastic (Hencky) 0.001 

FEM II 40 40 0.25 25.0 Large strain hyperelastic (Hencky) 0.001 

 

 
Case Elem E [MPa] ν [1] Kn [kN/m] Ks [kN/m] R [m] γ∗ [kN/m3] ∆t [s] 

DEM I 1062 100 0.25 92376 100 0.0144 28.128 0.0001 

DEM II 1062 40 0.25 36950 20 0.0144 28.128 0.0001 

 

In the following graphs it can be seen the response of the system for the case 1 in terms of 

displacements and stresses. 
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Figure 5.11 - Cantilever under gravity load (Case 1) – vertical displacement of Point A 
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The evolution of the horizontal stress at point B (Figure 5.10) is translated by the following graphic. 
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Figure 5.12 - Cantilever under gravity load (Case 1) – Horizontal stress at point B 
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In the following pictures show the displacement of the tip node of the cantilever for load case 2. 

 

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0 0.5 1 1.5 2 2.5 3

t [s]

ux
(t

) [
m

]

Fem_2D_NL (10 Elem) LS

Dem_2D (738 Elem)

 
Figure 5.13 - Cantilever under gravity load (Case 2) – horizontal displacement of Point B 
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Figure 5.14 - Cantilever under gravity load (Case 2) – vertical displacement of Point B 
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The evolution of the horizontal stress at point A (Figure 5.10) is translated by the following graphic. 
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Figure 5.15 - Cantilever under gravity load (Case 2) – horizontal stresses at point B 

 

Complementary, in the chart bellow, it can be appreciated the stability of the total energy of the 

system, TE , given by: 
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7Figure 5.16 - Cantilever under gravity load (Case 2) – total energy 



Chapter 5. Discrete approach of continuum 5.20 
 

5.6.2 Cantilever under sine tip load 

5.6.2.1 Analytical solution 

Let us consider the following a cantilever beam with a distributed mass per unit of length, m , 

Young modulus, E , and moment of inertia, I . 
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Figure 5.17 - Cantilever under sine tip load 
 

Assuming that the tip load is going to be the only load, acting on the cantilever, the non 

dimensional deformed shape function and derivatives are given by the expressions: 
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Again, this problem can be reduced to a single degree of freedom problem (SDOF) using the 

correspondent expressions Clough (1993) to obtain the equivalent SDOF properties. 
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Hence, we obtain 

Lmm
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The natural frequency of the system is given by 

Hence, we obtain 
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If the external force is a sine wave, the response of the system is ruled by the differential equation 

of the dynamic equilibrium, 
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The response of the SDOF system is given by, 
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The undamped response ( 0* =c ) the SDOF system is given by, 
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5.6.2.2 Numerical DEM & FEM solution 

In order to test the capacity of the DEM to follow the response of a system with external forces 

that vary in time, the same meshes were used to establish some comparisons. 
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Figure 5.18 - Cantilever under sine wave tip load –FEM & DEM Meshes 
 

The following tables contain the relevant information on the numerical analysis performed with 

Discrete element method. 

 
Case Elem E [MPa] ν [1] Kn [kN/m] Ks [kN/m] R [m] γ∗ [kN/m3] ∆t [s] 

DEM I 1062 100 0.25 92376 100 0.0144 28.128 0.0001 

 

This other table contains the counterpart information on the numerical analysis performed with 

Finite element method. 

 
FEM Elem E [MPa] ν [1] γ [kN/m3] Material and Kinematical model ∆t [s] 

FEM I 40 100 0.25 25.0 Large strain hyperelastic (Hencky) 0.001 
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In the following graphic the good agreement between the analytical solution and the numerical 

results for the vertical displacement of A, both for the FEM and DEM solutions, is evident. 
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Figure 5.19 - Cantilever under sine tip load – Vertical displacement of point A 

 

The evolution of the horizontal stress at point B (Figure 5.20) is translated by the following graphic. 
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Figure 5.20 - Cantilever under sine tip load – Horizontal stress at point B 

 



Chapter 5. Discrete approach of continuum 5.24 
 

5.6.3 Clamped beam 

5.6.3.1 Problem definition 

In order to assess the feasibility of the DEM model versus the FEM model, when modelling the 

response of systems that undergoes simultaneously finite (large) deformations and plastic 

behaviour, let us consider the following Clamped Beam. 
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Figure 5.21 – Clamped beam. Geometry and boundary conditions[m] 
 

The picture (Figure 5.21) shows both the geometries and boundary conditions considered along 

with the material properties. 
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Figure 5.22 – Clamped beam. Sampling points for stresses  [m] 
 
For the sake of clarity, the sampling points used to monitor de evolution of the internal stresses 

are illustrated in (Figure 5.22). 
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5.6.3.2 Numerical solution 

The comparison with the results obtained with the discrete element method was made using a set 

of discrete elements a eight nodded finite element mesh as shown below. 
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Figure 5.23 – Clamped Beam. Meshes  

 

The following tables contain the relevant information on the numerical analysis performed. 

 
FEM Elem E [MPa] ν [1] γ [kN/m3] fyd [MPa Material and Kinematical model ∆t [s] 

FEM I 240 10 0.25 20.0 135 Large strain hyperelastic (Hencky)  0.001 

FEM II 240 10 0.25 20.0 135 Large strain hyperplastic (Hencky) a) 0.001 

 
 
DEM Elem E [MPa] ν [1] Kn [kN/m] Ks [kN/m] fy [MPa} R [m] γ∗ [kN/m3] ∆t [s] 

DEM I 1714 10 0.25 9233.6 0.25 135 0.0100 22.285 0.00010 

DEM II 1714 10 0.25 9233.6 0.25 135 0.0100 22.285 0.00010 

 

 

 
a) Von Mises yielding criterion 
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In the following graphics, the good agreement between DEM solution and the homologous results 

from the FEM solution, both for hyperlelastic and hyperplastic model, is shown (Figure 5.24). 
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Figure 5.24 Clamped beam. vertical displacement of point A 
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Figure 5.25 Clamped beam. Total Energy 
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The following charts show the evolution of internal stresses at point B and at point C. 

 

-100.0

0.0

100.0

200.0

300.0

0 0.1 0.2 0.3 0.4 0.5

t (s)

S
x(

t)
 (A

) 
[K

P
a]

Fem_2D_NL (LS) 240 Elem
DEM_2D 1714 elem
Fem_2D_NL (LS) 240 Elem (V Mises)
DEM_2D 1714 elem (V Mises)

 
Figure 5.26 Clamped beam – Horizontal stress at point A 
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Figure 5.27 Clamped beam – Shear stress at point C 
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The response of the system obtained for the hyperplastic model at different time steps is 

illustrated in following pictures. 
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Figure 5.28 – Clamped beam - Comparative results  
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5.6.4 “S” shape beam 

5.6.4.1 Problem definition 

In order to asses the feasibility of the DEM model versus the FEM model, when modelling the 

response of systems that undergo finite (large) deformations, let us consider the following “S” 

shaped structure clamped at one end and subjected to a suddenly applied gravity force. 
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Figure 5.29 – “S” shape beam. Geometry and boundary conditions [m] 
 

Two load cases were considered. In the first one the structure is considered to be elastic while in 

the second load case elasto-plastic behaviour is assumed. 

 

The picture (Figure 5.29) shows both the geometries and boundary conditions considered along 

with the material properties. 
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5.6.4.2 Numerical solution 

The comparison with the results obtained with discrete element method was made using two 

different sets of discrete elements a one finite element mesh as shown below. 
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Figure 5.30 – “S” shape. Meshes [m]  
 

The following tables contain the relevant information on the numerical analysis performed. 

 
FEM Elem E [MPa] ν [1] Material and Kinematical model fy [MPa] γ [kN/m3] ∆t [s] 

FEM I 60 40 0.25 Large strain hyperelastic (Hencky)  20.0 0.001 

FEM II 60 40 0.25 Large strain hyperplastic (Hencky) a) 135 20.0 0.001 

 
DEM Elem E [MPa] ν [1] Kn [kN/m] Ks [kN/m] R [m] fy [MPa] γ∗ [kN/m3] ∆t [s] 

DEM I 1692 40 0.25 36950 0.0 0.0133 135000 22.593 0.0001 

DEM II 1692 40 0.25 36950 0.0 0.0133 135 22.593 0.0001 

 
a) Von Mises yielding criterion 
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The response of the system obtained for load case I at different time steps is illustrated in the 

pictures bellow. 
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Figure 5.31 – “S” shape. Load case I. Comparative results  
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Analogously, the response of the system obtained for load case II at different time steps is 

illustrated in the following pictures. 
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Figure 5.32 – “S” shape. Load case II. Comparative results  
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In the following graphics, the good agreement between DEM solution and the homologous results 

from the FEM solution is shown for load case I. 
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Figure 5.33 “S” shape. vertical displacement of point B 
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Figure 5.34 - “S” shape. horizontal displacement of point B 
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Figure 5.35 - “S” shape. Horizontal stress at point A 
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5.6.5 Notched beam 

5.6.5.1 Problem definition 

Let us consider the following beam with free supports subjected to two unsymmetrical point loads, 

at a ratio of 1:10. This experiment is based on the experimental work developed by Schlangen 

(1993) with the purpose of validating numerical modelling of crack paths. 
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Figure 5.36 – Notched Beam – Experimental set-up and geometry [m] 
 
The experimental results of the crack patterns obtained by Schlangen (1993) for both free and 

fixed supports (friction between the load plates and the beam) can be seen in the following 

pictures. 

 

 
 

Figure 5.37 – Notched Beam – Experimental results for free (left) and fixed (right) supports 
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5.6.5.2 Numerical solution 

The following set of 3299 discrete elements was used to model the notched beam. In order to 

capture the crack path development with more accuracy, a finer DEM mesh was used (elements 

with smaller radius) in the area where the crack path was bound to happen. 
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Figure 5.38 – Notched Beam. DEM set [m] 

 

The properties used to carry out the numerical simulation are summarized in the following table 
 

Mat E [MPa] ν [1] Kn [kN/m] Ks [kN/m] R [m] fy [MPa] γ∗ [kN/m3] ∆t [s] 

1 10 0.25 10000 0.0 0.00250 135000 22.593 

2 10 0.25 10000 0.0 0.00125 135000 22.593 

3 10 0.25 10000 0.0 0.00080 135000 22.593 

4 10 0.25 10000 0.0 0.00045 135000 22.593 

0.0000125 
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In the following pictures the crack path progression for different time steps can be observed along 

with the experimental results for free supports. 
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Figure 5.39 – Notched beam – Crack path for free supports 
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Chapter 6. Conclusions 6.3 

 

Nevertheless, alternative approaches should be explored to recover the stresses from each patch 

of discrete elements in a way more consistent with the strategy employed to model the continua 

using discrete elements. An example of this would be using a multi-scale based approach, where 

the stresses would came from the resultant of the forces acting on the boundary of each patch 

(cluster) of discrete elements. 

 

The large strain modelling of bonded discrete elements, although yielding very promising results 

still lacks some accuracy when modelling hyper-plastic behaviour. This may be improved by 

using more sophisticated models to mimic the bond between each discrete element, such as 

hyperelastic spring models. 

 

The crack path modelling has proven to be one of the strong points favouring the use of discrete 

element based techniques to model structural behaviour of structures that will exhibit brittle failure 

after a certain level of tensile stress has been achieved. Some more development could be 

achieved in the form of more sophisticated techniques to evaluate the average tensile stresses 

from the knowledge of the interaction force between each pair of elements. 

 

The overall conclusion is that the discrete element method is becoming an increasingly more 

attractive way of modelling the continuum even considering the computational costs usually 

associated with this technique. This trend gains momentum as the speed of the microprocessors 

progresses exponentially. This is further enhanced by the fact the explicit time integration 

schemes employed in discrete element method simulations can be easily parallelized and hence 

allowing the use o multiple processors. 
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