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SUMMARY

The objective of this thesis is the establishment of an objective comparison between the Finite
Element Method and the Discrete Element Method when modelling the mechanical behaviour of
the continuum, both for quasi-static and dynamic response. These two very different approaches
to the same problem have increasingly gained popularity during the last years, becoming the

distinction between the fields of application of each method each time more difficult.

This research aims the assessment of the accuracy of the Discrete Element Method to solve
problems that traditionally belong to the field of the Finite Element Method. This comparison has
the ultimate purpose of determining the applicability of the first method to problems that involve a
first stage when the material is elastic or elasto-plastic, followed by a second stage where actual

physical separation of portions of the material occurs.

The first part of this work comprises a review of the theoretical background and numerical
techniques used to solve continuum mechanics problems using the Finite Element Method, both

for quasi-static and dynamic loading.

A description of the Discrete Element Method, encompassing its insights and the numerical

strategies involved in its implementation constitute the second part of this work.

The establishment of a methodology to model the continua using a Discrete Element Method
based approach, namely the development of techniques to simulate elasto-plastic behaviour and
crack path modelling, accompanied by illustrative benchmark examples, are the main pylons over

which the third part of this research lays.
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1 Introduction

1.1 Summary

The objective of this thesis is the establishment of an objective comparison between the Finite
Element Method and the Discrete Element Method when modelling the mechanical behaviour of
the continuum, both for quasi-static and dynamic response. These two very different approaches
to the same problem have increasingly gained popularity during the last years, becoming the

distinction between the fields of application of each method each time more difficult.

This research aims the assessment of the accuracy of the Discrete Element Method to solve
problems that traditionally belong to the field of the Finite Element Method. This comparison has
the ultimate purpose of determining the applicability of the first method to problems that involve a
first stage when the material is elastic or elasto-plastic, followed by a second stage where actual

physical separation of portions of the material occurs.

The first part of this work comprises a review of the theoretical background and numerical
techniques used to solve continuum mechanics problems using the Finite Element Method, both

for quasi-static and dynamic loading.

A description of the Discrete Element Method, encompassing its insights and the numerical

strategies involved in its implementation constitute the second part of this work.

The establishment of a methodology to model the continua using a Discrete Element Method
based approach, namely the development of techniques to simulate elasto-plastic behaviour and
crack path modelling, accompanied by illustrative benchmark examples, are the main pylons over

which the third part of this research lays.
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2 Continuum Mechanics

2.1 Introduction

Remembering that Finite Element Method lays on the continuum mechanics theories, it could not
be avoided to dedicate this chapter to its the fundamental aspects as well as the ones related

with what is commonly known as nonlinear continuum mechanics.

2.2 Eulerian and Lagrangian coordinates

The position vector of a material point in the reference configuration is given by X.

3 (2.1)

, where X, are the components the position vector, and e, are the unit base vectors of a

rectangular Cartesian coordinates system.

The main feature of the vector X is that it will not change with time. The variables X are called
material coordinates or Lagrangian coordinates.

Analogously, the position vector in the current configuration is given by

3
X=x€ = inei
i=1
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2.3 Deformation and motion

The motion of a body can be described by Belytschko (2001)
x=0(X,?t) or x, =¢.(X,1) (2.3)

, where x, = x,e, represents the position at time ¢ of the material point X . The coordinates x
describe the spatial position of the particle are commonly known as spatial, or Eulerian
coordinates. The function @¢(X,¢) maps the reference configuration into the current configuration

attime 7.

y,Y
Mmfb
u
X
Q, r
X I

X, X

Figure 2.1 — Current and initial configurations of a body

If the reference configuration is identical to the initial configuration, the position vector x of any

point at time ¢ = 0 coincides with the material coordinates, hence

X =x(X,0) = ¢(X,0) or X, =x.(X,0) = ¢,(X,0) (2.4)
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2.4 Eulerian and Lagrangian description

Two approaches are used to describe the deformation response of a continuum. In the first
approach, the independent variables are the material coordinates, X and the time f¢. This

description is called material description or Lagrangian description.

In the second approach, the independent variables are the spatial coordinates X and the time 7.

This is called spatial or Eulerian description.

In fluid mechanics it is often unnecessary to describe the motion with respect to a reference
configuration. On the other hand, in solids, the stresses generally depend on the history of

deformation, forcing the use of an undeformed configuration to define the strain.

2.5 Displacement, velocity and acceleration

The displacement of a material point is given by the difference between its current position and its

original position (Figure 2.1), hence

u=(X,n)=9¢X,N-9¢X,0)=9(X,))-X , u; =¢,(X;,0)— X, (2.5)

The displacement can be also written as

u=x—-X, u, =x,—X, (2.6)

1

The velocity v(X,#) can be defined as the rate of change of the position vector for a certain

material point, i.e. the time derivative with X held constant. These derivatives, with X held

constant, are often called material time derivatives.

The velocity can be expressed in many different ways as shown below.

2.7
VX —i = I¢(X,7) _ ou(X,7) (2.7)
ot ot

In the expression above, the quantity X is replaced by the displacement u by using (2.6) and the

fact that X is time independent.

The acceleration is the rate of change of velocity of a material point, which can be written as

follows

i (2.8)
aX,r) = Dy _ b= w(X,7) _ 0 u()z(,t)
Dt ot ot

Chapter 2. Continuum Mechanics 2.4



2.6 Deformation gradient

As the description of deformation and measure of strain both play and essential role in nonlinear
continuum mechanics, the definition of this important variable for the characterization of

deformation urges.

The deformation gradient is given by

a¢(X,t) ox T
F=—""—""/’"="=(V ¢ F.
oX oX ( * ) o Y

1

X, X,

_9¢,(X,1) _ o, (2.9)

From a purely mathematical perspective, the deformation gradient can also be defined as the

Jacobian matrix of the vector function ¢(X,1).

y,Y

Ff#>

51

X, X

Figure 2.2 — Deformation gradient

Considering an infinitesimal line segment dx in the reference configuration, from the (2.9) we

can see that the corresponding line segment in the current configuration is given by

dx=F-9X or dx;, = F; -dX (2.10)
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The deformation gradient in a rectangular coordinate system is given by

dx, dx, dx [ dx dx dx |

(2.11)

dX, dX, dX, dX dY dzZ
dxy de, dv, | | dv dy ay

dX, dX, dX, dX dY dZ
dx, dx, dx, dz dz dz

|
I
I

dX, dX, dx, | LdX dY dZ ]

The determinant of F, commonly written as J, is known as the Jacobian determinant or the

determinant of the deformation gradient.

This quantity is of most interest to relate integrals in the current and reference configurations, as
follows,

[rae=[frd,. or [ f(x.y.2hdxdydz = [ £(X.Y.Z)IdXdYdz (2.12)
Q

Q Q Q

To finalize, the material derivative of the Jacobian determinant is given by

Ezjzjdivsz%
Dt X

1

(2.13)
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2.7 Strain measures

Unlike the linear elasticity, many different measures of strain and strain rate are used in nonlinear

continuum mechanics.

One of the requirements that have to be fulfilled by any strain measure is vanishing when in the
presence of rigid body rotation. If a certain strain measure fails this requirement, this will mean
that when undergoing a rigid body motion, this measure will predict non zero strains and

consequently non zero stresses.

2.7.1 Engineering strain tensor

The Engineering strain tensor, €, gives the change in the length of the material vector, dX

,when comparing it with its original length, dx.

ou (2.14)

== —(Vu)
= (Vu)

It is also common to write the Engineering strain tensor as sum of the stretfch tensor and the spin

tensor
1 1 (2.15)
e :E[Vu+ (Vu)T]+E[Vu— (Vu) ]
stretch tensor spin tensor
Using matrix notation the small strain (Engineering) tensor is given by:
u (2.16)
€. ox
e=le, 1= &
2 %
Vo ou dv
JR— + J—
dy Ox
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2.7.2 Green strain tensor

The Green strain tensor, E, gives the change in the square of the length of the material vector,

dX.

ds® —dS* =2dX-E-dX or dxdx, —dX dX, = 2dX ,E;dX ;

(2.17)

The Green strain measures the difference of square of the length of an infinitesimal segment in

the current (deformed) configuration and the reference (non deformed) configuration.

To evaluate the Green strain tensor, we use (2.10) to rewrite (2.17) as

dx-dx =(F-dX):(F-dX)=dX(F" -F)-aX (2.18)
Using indicial notation, we have
dx-dx = dx,dx, = FydX FydX, = dX ,F,FydX, = dX(F" -F)-dX (2.19)
Using the (2.19) with (2.17) and dX-dX =dX-1-dX, we arrive at,
dX -F"-F-dX—dX-1-dX—dX-2E-dX =0 (2.20)
,or
dX-(F" -F-1-2E)-dX=0 (2.21)
Since the relation above must hold for all dX, we finally obtain
1 1 (2.22)
E =§(FT F-1)or E, ZE(EkTF"f -5,
Sometimes E is written as
2.23
E-L (C-1) (229
2
,where C=F" -F is the right Cauchy-Green tensor.
Chapter 2. Continuum Mechanics 2.8



2.7.3 Logarithmic strain tensor

The Logarithmic strain tensor, €,,, ,is given by

2.24
€1, = %ln(FFT )= %m(B) (2249

, where B is the left Cauchy-Green tensor.

The explicit form of this tensor is obtained performing a spectral decomposition of B that will

yield the eigenvalues (principal stretches) and the eigenvectors (principal directions of stretching).

Particularizing for the two dimensional case we have,

3 (2.25)
SLog = %IH(B) = Z%ln(ﬂ’z )El

, Where /1[ are the eigenvalues of left Cauchy-Green tensor, B, and E. are the tensors

containing the correspondent eigenprojections vectors.
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2.8 Stress measures

2.8.1 Cauchy stress tensor

Let us consider a deformable body at its current position Bonet (2008).

y,Y

X, X

Figure 2.3 — Traction vector
The traction vector, t, can be defined from the following mathematical limit,

2.26
t(n) = lim ap (2.20)
Aa—0 Aa

The traction vectors in Cartesian directions (stress components) (Figure 2.4) are given by

tle,)=o0,e +0,¢€e,+0;e€,
te,) =0, +0,¢€, +0,e€, (2.27)
te,)=0,,e, +0,e, +0,,e,

Using indicial notation,

3

te;)=Y oye, (2.28)
i=1

Figure 2.4 — Stress components

The tensor 0 ; is the Cauchy stress tensor often called as true stress due to the fact this is the

only stress measure with a physical meaning.
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Lets consider the equilibrium of an elemental tetrahedron (Figure 2.5) under the action of active

and passive tractions and a body force per unit of volume, f .

2
e1

Figure 2.5 — Elemental tetrahedron

Writing the equilibrium equations, we have

3 (2.29)
t(m)da + Y _t(—e,)da, Hdv =0
i=1

Callingda, = (n-e;)da, the projection of the area, da, onto the plane orthogonal to the
Cartesian direction , i

d
Dividing equation (2.29) by da and remembering that d_v — 0, we obtain,
a

3 da (2.30)
-3 t(—e ) Sl g A
' da da

j=1

t(n)

1] Il
M- 7D
Q =
< [¢"]
ChER
o ch
-
= L/

This Cauchy stress tensor gives the true stress acting in a facet, t , from the knowledge of the

components of its normal vector, n.

Chapter 2. Continuum Mechanics 2.11



2.8.2 Other stress measures

Often within the context of finite deformations, it is more convenient to define the stress referring

to a known configuration state, rather then to the real configuration state.

Although these alternative stresses sometimes do not have a obvious physical meaning, they are

useful as they are work conjugates of certain strain measures.

2.8.2.1 1%'Piola-Kirchoff stress tensor

The 1% Piola-Kirchoff stress tensor, P, is defined as

P=JoF ™", with J =det(F) (2.31)

2.8.2.2 2" Piola-Kirchoff stress tensor

The 2™ Piola-Kirchoff stress tensor .S, is defined as

2.32
S=JF'eF™" and czéFSF" (2.32)

We should emphasize that the 2™ Piola Kirchoff stress tensor is symmetric and energetically
consistent with the Green-Lagrange strain tensor. In other words, the strain energy density
calculated using the 2™ Piola Kirchoff stress tensor with the Green-Lagrange strain will be the

same as that calculated with the Cauchy stress tensor and the small deformation strain tensor:

ce=SEoro; ¢, =S, E; (2.33)

g )

2.8.2.3 Kirchoff stress tensor

The Kirchoff stress tensor,T, can be defined as the rate of volumetric change,
J=det(F) ,under the time, ¢, , of a standard configuration to the time ¢ of the current

configuration.

t=J o, with J =det(F) (2.34)
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2.9 Dynamic equilibrium

2.9.1 Translational equilibrium

Lets consider a body under the action of body forces, f = pb , and traction forces, t, per unit of

area acting on the boundary Bonet (2008). (Figure 2.6).

y,Y

time=0

time=t

X, X

Figure 2.6 — Equilibrium

The balance of linear momentum implies that

0 (2.35)
—[pvav  =[tdA+[pbav
at Vv 1% Vv
Rate of change of momentum
Remembering that t=06-n,
0 (2.36)
—[pvav =[onda+[pbav
at \%4 \%4 |4
Using the Gauss theorem, we obtain
[padv =[divedv +[pbav (2:37)
\%4 |4 v
, where the vector dive is given by,
3 do.. (2.38)
dive=) —e,
p axj
Chapter 2. Continuum Mechanics 2.18



The previous equation can be applied to any enclosed region of the body,

dive+pb=pa (2.39)

The equation (2.39) is known as the local spatial dynamic equilibrium equation for a deformable
body. If the equation is not satisfied, (2.40) defines out of balance or residual force per unit of

volume, r as:
r=dive + pb—pa (2.40)

2.9.2 Rotational equilibrium

The rotational equilibrium of general body implies that the total moment of body and traction

forces about any arbitrary point, say the origin, is zero.
jxxtda+jx><fdv=0 (2.41)
dv v

Remembering that the cross product of a force with a position vector, X, yields the moment of

that force about an axis through the origin.
[xx(on)da+ [xxtdv=0 (2:42)
dv v

After some tedious manipulation, it can be demonstrated that previous equation implies that

6=¢' or 6,=0, (2.43)

, Which is saying that the Cauchy stress tensor is symmetric.

Chapter 2. Continuum Mechanics 2.14



2.10 Principle of virtual work

Let us consider a body in dynamic equilibrium and let dube an arbitrary set of virtual

displacements such that ou =0 onI, .

Y

time=t

X

Figure 2.7 — Principle of virtual work

Multiplying the differential equiliorium equation by du and integrating over the volumeV .
[diveduav +[pbsuadv = [ paduav (2.44)
Vv v Vv

Noting that

div(edu)=dudive+6:% and 2% =Vou+ (V) (2.45)
And using the Gauss theorem gives:

[paduav +[o:Gedv =[pbdudv + [noduda (2.46)
v v v T,

Remembering the symmetry of ¢ and the boundary conditions:

en=ton [, and du=0 on [}, (2.47)
We finally have
jpa&dv+jc:§sdv:jpb&ldv+jz&1dA (2.48)
\4 Vv v I
Work of internal forces Work of external forces

Chapter 2. Continuum Mechanics 2.15



Using matrix notation and defining:

e=le e, 7, (2.49)
G = [O'x o, TW]T
The PVW becomes:

[paidv+[& eav =[psa"dv+ [ aa"bdA (2.50)
v v ! r,

2.11 Material models

2.11.1 Linear elastic material

Being this the simplest and the oldest material model, it is still one of the most essential and

widely apllied in many fields of Engineering.
The stress strain relation for a linear elastic material, undergoing small strains, is given by:

c=D:¢ (2.51)

, with D, being the small strain elasticity tensor

2 (2.52)
D=2Gl+(K—§GjI®I

, defined by the Bulk modulus K , the shear modulus G , the fourth order identity tensor I and

the second order identity tensor 1.

E (2.53)

Chapter 2. Continuum Mechanics 2.16



2.11.2 Neo-Hookean material

This model, sometimes referred as the large strain extension of the Hooke’s law, is one of the

simplest hyper elastic models, for moderately large deformations.

The following relation between the deformation gradient, F, and the Kirchoff stresses can be

established
t=uB-I)+Aln (J)I ,with B=FF" and J = det(F) (2.54)

, with B being the left Cauchy-Green Tensor and , F , the deformation gradient defined before.

The Lame constants g and A are given by

= E
B E
2(1+v)  with k=————— (2.55)
52 3k=2u 3(1-2v)
3
The real or Cauchy stresses, 6, can be recovered from the Kirchoff stresses as follows
1 (2.56)
=T —
J
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2.11.3 Hencky material

The Hencky model can be defined as the finite logarithmic strain-based extension of the standard

linear elastic material. This model was proposed by Hencky (1933) to model the behavior of

vulcanized rubbers. Let, €,,, , be the Eulerian (spatial) logarithmic strain tensor Neto (2008).

1 (2.57)
€, = 1n(V)=51n(B)
The Hencky strain-energy function is defined in a compact form as
_ 1 (2.58)
p‘”(alog)zzalog :D:alog
, where D has the same format of the infinitesimal isotropic elasticity tensor referred before
2 (2.59)

D= 2Gl+(K—§GjI®I

The above strain-energy renders the following linear relationship between the Kirchoff stress and

the Eulerian (spatial) logarithmic strain:

2.60
‘r:ﬁa—szza (260
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2.12 Plasticity

Let us consider a point of a deformable body that undergoes external forces that induce
deformations beyond the elastic limits of the constituent material. When this happens, part of the
total deformation of the point will remain even after total unloading (Figure 2.8) and the material

starts to yield entering in the plastic state.

€ €
p T
8 1
Figure 2.8 — Uniaxial Yielding
The total strain is given by the following sum
g=¢g, +¢&, (2.61)

, where €, and g, represent the elastic (reversible) and the plastic (permanent) components of

the total strain.
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When dealing with multiaxial states of stress, the threshold between the yielding and non yielding

state (elastic and elasto-plastic) is usually defined by what is often called a yield criterion.

The vyield criterion is defined by a mathematical function (yield function) that depends on the

existing internal stresses of the material, ¢,, and other internal variables, A, at certain time

e

step, .

Hence,

f=flo, .A.0,) (2.62)
, Where o, is equivalent uniaxial yield stress, commonly known as effective stress.

The yield function, f', defines the equation of a surface in the space of the principal Cauchy
stresses.

62 df
a=——
., do
\
ELAS f=0 (PLASTIC)
>
(¢
1

Figure 2.9 — Multiaxial yielding
Hence, a material is yielding if the following condition is verified:
f=rflo, \A,0,)=0 (2.63)

The plastic flow is ruled by the Prandtl-Reuss flow rules translated by:

. . 2.64
£,= z(g—fj — Ja .
()
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, Where €, is the effective plastic strain, a is the vector normal to the yield surface and Aisa

positive constant usually referred to as “plastic strain-rate multiplier”.

The Cauchy stress changes are related to the strain via
6=D(g—¢,)=D[¢ - Ja) (2.65)

The equation (2.65) relates mall changes in stress, 6, with small changes in elastic strain, &,

and €,.

For plastic flow to occur, the stresses must remain on the yield surface and hence,

fzaic'y:a%:a:c (2:66)

Jc

The plastic multiplier, /i, can be found we can pre multiplying equation (2.65) by a’ and using
equation (2.66).
a'Dé . a:D:¢ (2.67)

2:7,— or A=
a Da a:D:a

Substituting (2.64) in (2.65) we have,

(2.68)

c:DTszn(I—aaTDJs or c:(D— ! (D:a)®(D:a)}:é

a’Da a:D:a

Where D, is the so called modular tangential matrix (or forth order tensor) which is nor only a

function of the elastic parameters ( E and V) but also depends on the current Cauchy stresses,

C.
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3 FEM

3.1 Introduction

Being the Finite element method a robust numerical technique to solve many different
engineering problems and one of the fundamental methods in the development of this research

work , it is fully justified a description of its insights.

The Finite Element Method is a numerical technique that makes possible to obtain approximate
solutions for the differential equations that rule most physic phenomena, including the ones

related with solid mechanics.

The continuum is assumed as homogeneous and often isotropic (same properties in every
direction) and is divided into regions or elements. When the displacements are the unknown
Zienkiewicz (2000), their values inside of the element are interpolated using special functions

called Shape functions.

The first part of this chapter covers the essential features of the method such as the subdivision

of the domain into finite elements (discretization) and the kinematics.

The aspects related with small and large strains FE plasticity are covered are discussed and

explained in the following point.

The last part of this chapter covers the aspects related with the techniques used to integrate the

equations of motion in time, namely the commonly known as implicit and explicit methods.
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3.2 Finite element approximation
3.2.1 2D Geometry and displacement

The continuum can be divided in a finite number of regions, commonly called finite elements

(Figure 3.1). The set formed by these regions (elements) is called mesh.

The displacement field within each element, u(x,y), can be approximated using appropriate

shape functions, N, . There will be as many shape functions as the number of nodes of the finite

element possesses.

Y

Finite element

Mesh at time=0 Mesh at time=t

Figure 3.1 — 2D Discretization of the continuum. Finite element mesh

These mathematical functions permit to obtain the values of a scalar field within any point of a

finite element from the knowledge of the nodal values of the field. Each function, N, , will be

worth unity at the “i "node of the element and zero in the remaining nodes.

These same functions are often used to interpolate both the geometry and the displacement field

of the problem itself. When this is the case, these finite elements are called isoparametrics.
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The geometry of the element can then be interpolated as follows,

n ) (3.1)
X(&n)=2N.(&n)x,
i=1
Y(Em)=2N,(En)r
i=1
The set of axis ({,‘,77) are the local axis of the finite element (Figure 3.2).
(x4.y4)
Y
n
(x3,y3) (-1,1) (1,1)
Global to local
(x1,y1) ﬁ &
(-1,-1) (1,-1)
(x2,y2)
X

Figure 3.2 — 2D Discretization of the continuum. Global and local coordinates

The shape functions of the four nodded quadrilateral finite element, referred to the local axis, are
given by:

(3.2)

Ny (€)= (1-€)1-n)
N, ()= (+8)1-n)
N, ()= (1+€)(1+n)

N, ()= (1-£)1+n)
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The displacement field of any point of the finite element, u, can be obtained in a similar way,

N e (3.3)
(€)=Y N, (&),
i=1
V(f,ﬂ) = ZN; (5’77) Vie
i=1
In the case of the four nodded quadrilateral finite element (3.2) we will have,
'N,(&7) O INER (3.4)
0 N1(§’77) N1
N, (&) 0 X,
X (é,n)} 0 N,(&Em) ||y
X N = =
(&) {Y(f,n) N,(&nm) 0 X,
0 N, (5,77) V3
N, (&.7) 0 X,
_0 N4(§’77) 1 1Ya
and
N,(&7n) 0 7w, ] (3.5)
0 Nl (5’77) V1
N, (&) 0 u,
u(G.n)] |0 N,(Em) | |»
wen)=| )|
V(Qg’n) N3 (5’77) 0 Us
0 N3 (5,77) V3
N, (&.7) 0 u,
_0 N4 (f’ 77) a _V4 i
Or, in a more compact way, we can write (3.4) as follows,
X(£.m)=N(£.n) X (3.6)
u(,7)=N(.7)u® (3.7)

Where, u represents the displacement vector correspondent to the local coordinates (f,?]) ,

N(f,?]) is the shape function matrix and u® is the vector containing the nodal displacements.
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As seen in the preceding chapter on Continuum Mechanics, the measures of strain often involve

the computation of partial derivatives of the displacement field, u(ui,vi )

wen) N Ga), e o), 69
ox pn ox ' dy pur dy '
(&) _ M aN, (&) (&) _ M oN, (£.77)
= — 77 . d _— = —t .
ox ; ox vian dy ; dy i

The derivatives of the shape functions will be obtained from the chain rule of differentiation as

follows,
oN, :8Niﬂ+aNiﬂ (3.9)
o odx a& dy 9
ON, ON, ox ON, dy
on  x an Ay I
Or,
& | |9 || or _1] ox
oN, ox dy || ON; oN;
an | Lonan |l oy oy
hence,
oN, oN, (3.11)
ox 41 9
e
dy %

Where N; represents shape function associated with node i of the element.
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Finally, we have

au Z -1 aN 1 N

i i—1[ 11 Y T a’]j i
au Z —1 aN 1 aN ]
Aoy, By Ty,
dy i—l( Tag T op
aV - -1 aN -1 aN
== g PN gy 22N,
I 1_1( 11 & T an jvl
aV < -1 aN 4 aNj
- = J — L4 ! :
dy 1_1( Tag 7 ap

(3.12)

The transformation (3.11) is valid only if the determinant of the Jacobean matrix, J , is positive.

The elements of the Jacobean matrix of the element [J]are obtained from
ax_zaNiX ay_"aNiY
dg ‘T 95 ' dg T g

an o Jdn on ‘o dn

The real area of the surface of the element comes from,

dA=dxdy=|J|dédn =T didn.

(3.13)

The knowledge of this area will reveal of great interest in the determination of the stiffness

matrix of the element.
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3.2.2 Strain

Let us consider the engineering strain tensor in Voigt notation,

o (3.15)
ox
ele 1) O
2; %
o) au o
dy  ox

Remembering that the derivative of the displacement field can approximated by:

0 L _ ON. 4 ON, 1 (3.16)
a_ZZZ(le la_égl"'-]n la_nl]”i :zAi U;
— .

o) < . ON, 1 ON, %
a_;t:Z(Jula_é;"'Jzz la_y;Ju[:ZB[ u;

We can re-write (3.13) as follows,

u, (3.17)
Vi
U,
. A 0 A 0 A 0 A O
\%
g={e, +=/0 B, 0 B, 0 B, 0 B, ?
u
27, B A B, A, By Ay B, A ’
V3
U,
Vs
Or, in a more compact format,
8:Be(§’n)Ue (318)

WithB,, being the shape functions derivatives matrix and U, the vector containing the

e

displacements of each degree of freedom of the element e .
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3.2.3 Stresses

The stresses are usually computed at the same Gauss points where the numerical integration

took place and they will depend upon the material model adopted.
3.2.3.1 Cauchy Stress
In case of small strains, the elastic Cauchy stress in at a certain Gauss point of the element with
coordinates (&,,7,), is given by
6=De=DB({.7,)U, (3.19)

3.2.3.2 Kirchoff Stress

Within the context of large strain plasticity, frequently becomes very useful the adoption of the
Kirchoff stress tensor,T. This can be easily done from the knowledge of the Cauchy stress

tensor, as follows:

1=J6=JDB(.,7,)U, (3.20)
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3.3 Principle of Virtual Work

Let us consider a body in dynamic equilibrium and let dube an arbitrary set of virtual

displacements such that ou =0 on T}, .

Y

time=t

Figure 3.3 — Discretized Principle of virtual work

Remembering the Principle of virtual work seen in Chapter 2, we have:

[paduav +[e:&av = [pbduav + [t suda (3:21)
\% 1% v Iy
Work of internal forces Work of external forces
With,
en=tonl, and du=0 on I} (3.22)
Using matrix notation and defining:
e=le e, 7, (3.23)
c= [ax o, TW]T
The PVW becomes:
[paidv+[& eav=[pau'adv+[su'bdA (3-24)
\% \% v I
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3.3.1 Discretization

Remembering that the displacement and acceleration fields of a finite element can be

approximated as

U, (x,7)= Z":Nl.
i=1

(&.7)u, =N"u,

(3.25)
I.'.]e(X’t) = ZNt (ég’n)ue = NT ﬁe
i=1
And
£=B (£7)U, (3.26)
Substituting, we have
n elem n elem
> Up U, dV+jéUfB]odv] = > [0 bav+[ a0, bdA
e=1 \y v e=l \v (3.27)
Work of internal forces Work of external forces
Dividing the work into its internal and external components, we have
T n elem nelem -
int ernal :a’le z .[p N:Ne dV u+ z .[Be GdV (328)
L\ e=l v e=l vy
_n elem nelem
Wooma =00, | D" [PN,Dav+ 3 [N, "bdA (3.29)
e=l y e=l T,
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|4

external

Considering that W for any arbitrary &leTwe finally obtain the generic

internal ~

expression:
nelem n elem n elem n elem
> [PNIN, aV i+ Y [Bodv=73 [pN/bav+ ) [N'bdAd  (330)
e=l y e=l y e=l y e=1 o
The previous equation can be rewritten as:
M u + Frlnrernal (u) — F[Exrernal (331)

Considering the particular case of small strain elasticity where, 6 = D g, (3.30) will assume the

following format

n elem nelem nelem nelem
(Z [P NIN, dv}n Y [B/DB,av=73 [pN/bav+ Y [N'bdA 3:32)

e=l vy e=l y e=l y e=1 Iy

Hence (3.32) can be rewritten as:
Mii, +Cu, +K, u, = F~" (3.33)

, with the above referenced entities given by

n elem

M= z J-p N'N, dv (Consistent mass matrix) (3.34)
e=l vy
C= C(M,K) (Dampening matrix) (3.35)
nelem nelem
Frent = z J.p N."bav+ z .[NeTb dA  (External forces) (3.36)
e=l y e=l T,
Frlnrernal — niijeTGdV (lnternal forceS)
e=l vy
nelem
F/rer = Z .[,0 NIN, dvjﬁ =Mu (Inertial forces)
e=1 y
n elem (337)
K=Y [B/DBdv (Stiffness matrix)
e=l y
or
n elem
_ T
Ky = z J-Be D, B.dv (Tangent stiffness matrix)
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3.4 Newton-Raphson solution algorithm

The solution of the linearized global equilibrium equations cannot be achieved in one single
operation due to the non linear nature of the relation between the applied forces and the
correspondent internal stresses. Hence, Equation (3.38) is commonly designated as a non linear
system of equations in opposition to its counterpart a linear system of equations, being the last
mostly restricted to the elastic small strain formulations.

M ﬁr + C ]:lt + KT ut — FrExternal orr= F[Exrernal _ (Flnerria + F[Internal ) — 0 (338)

t

The Newton-Raphson algorithm consists in the following iterative scheme:

1. Apply the target incremental load, AF, =] pamy _Ffm’"“’

1+1

2. Computation of the tangent stiffness matrix Kg)(duﬁfl)

3. Computation of correspondent iterative displacements, &(i)

4. Computation of the incremental displacement, du*" = du'’, + éa"

5. Computation of the associated internal and inertial forces, Fl’fl"”"”’ and F:’f”w

Internal Inertia
+F )

. q (i) _ ypExternal (
6. Computation of the residual vector, '/ =F - Ft+1 il

t+1

7. Computation of the tangent stiffness matrix K(T”l)(duii‘;”)

8. Apply the residual vector, rand norm, Hr(”‘)

9. |If ”r(”l) bigger than tolerance go to step 2 Else go to step 1
A
(i+2)
(i+1) K
T b
Fm 4 KT ”””” T 7r(i+1) }r"*z)
K(I) i : |
AF v | | ro
F | | | | i
t | ! | i
| ; : | .
u u(i) u(i+1) U(i+2)
t t+1 t+1 t+1
ou. ou. ou.
i i+1 i+2
—
du,
duy
(i+2)
dul+1

Figure 3.4 — Newton-Raphson iteration scheme

Chapter 3. Finite Element Method 3.13



3.5 Finite element elasto-plasticity in small strains
3.5.1 Integrating the rate equations

When solving a boundary value problem numerically, using the FEM, the stress and strain

increments possess a finite character, hence the differentials ¢ and £ will be replaced by Ac

and A€ .

By doing this we are, in fact, adding some error to the integration of the stress and strain rate

equations. Hence, it is of great importance to adopt strategies that will minimize these errors.

Let us consider the following figure representing the stress in a Gauss point before, 6 , and

after an incremental stress A6 change has been applied, 6;=64 + Ac.

f=0

>

(¢)

f

Figure 3.5 — Returning to yield surface
: . . of . :
Once the stresses should always remain on the yield surface f=8—0'=0 at all times, the

c

stress at point B must corrected and brought back to yield surface, 6. . Many different strategies

can be successful employed to achieve this, laying the difference between them on the
robustness and speed of convergence each one will guarantee. We can divide these techniques
into two main categories: the explicit and the implicit methods. The ones belonging to the first
category are often simpler but less robust than the second ones, in what concerns the
convergence to the correct point on the yielding surface.
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3.5.1.1 Backward-Euler return to the yield surface

The backward-Euler is one of the most popular and robust algorithms to return to the yielding

surface. This technique is based on the following equation Crisfield (1991):

6.=6,+AADa,

(3.39)

That implies the knowledge of the normal to the yield surface in the final point, making this return

method implicit, hence needing an iterative solution procedure.

To derive an iterative loop a residual, representing difference between the current stresses and

the backward-Euler stresses, must be defined.

r=o—(c,+AADa,) with Ad= TfB
a'Da

(3.40)

Keeping the stresses at B, 6 , fixed, a truncated Taylor expansion can be applied to (3.40) so

as to produce the residual for the generic iteration, n

L oa . (3.41)
r,=r,+6+ADa+AAlD—¢
06
, Where A is the change in A4 and 6 is the change in ©.
Setting the residual, r, , to zero we have,
92" ‘ ‘ (3.42)
6= —(I+A/1Da—j (r, +iDa)=Q'r, +Q"'iDa
G
Performing a similar Taylor expansion of the yield function, we will have
o . o . L (3.43)
fl=7 P £, =fc+ac6+AA=0
do  de, "
Rearranging (3.43) we finally obtain the correction to the plastic multiplier,
_ fco —aéQ_ll}) (3.44)
alQ'Da. + A,
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In the following flowchart, the backward-Euler iterative algorithm is summarized.

Calculates Q matrix

Q= I+MD%”)

Calculates plastic multiplier change
S= fe —afﬁ)Q"rov
ag;Q Dag+Ac

Calculates stress change
o=Qr, +Q"ﬂDacw

Updates stress

G=0.;+0,

Calculates yield function
1E= fe+ag, GrAA

Figure 3.6 — backward-Euler return algorithm
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3.6 Finite element elasto-plasticity in large strains
3.6.1 Multiplicative elasto-plastic kinematics

The fundamental principle on which the large strain elasto-plasticity lays is the multiplicative split

of the deformation gradient, F, into elastic and plastic contributions. It is assumed that the
deformation gradient can obtained from the product Neto (2008)

F =F°F* (3.45)

Where F° and F” are the elastic and the plastic deformation gradients, respectively. The
multiplicative split was first introduced by Lee and Liu (1967) and by Lee (1969).

Initial configuration Final configuration

Local intermediate
configuration

Figure 3.7 — Multiplicative split of F

This multiplicative split implies the existence of a local unstressed intermediate configuration

defined by the plastic deformation gradient, F”. Hence, at each material point, the local

intermediate configuration is obtained from the fully deformed configuration by purely elastic

unloading, defined from the inverse of F°¢.
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3.6.2 General isotropic large strain plasticity model

With this model, based on logarithmic strains and Exponential return mapping Neto (2008), the

same procedures adopted for the integration of the rate equations in small strains can be readily
used.

Figure 3.8 — Isotropic large strain plasticity flowchart
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3.7 Consistent tangent operator

A linearized version of the finite deformation virtual work equation, (3.27), suitable to be used

within the Newton-Raphson algorithm is generically given by
r =K (3.46)

Remembering that,

n elem
K, =Y [B'D,B.dv (3.47)

e=] vy

Where D, is the small strain consistent tangent modulus.

3.7.1 Consistent tangent modulus

Within the Newton-Raphson solution algorithm, a linearized (or tangent) form of the incremental

equilibrium equations is needed.

Recalling that the standard back-Euler algorithm can be expressed as

6.=6,+AADa, (3.48)
with, 6, = Dg, being the elastic trial stress and 6 the corrected stress on the yielding surface.

The differentiation of (3.48) will lead to

. 3.49
6 =Di— iDa—AD22 (3.49)
Jo

, Where the last term of (3.42) is omitted from the derivation of the standard tangent modular

matrix (modulus), D,

From (3.42) , after regrouping the terms, we have

. (3.50)
6 :(I+Al%j Dt a)

0o
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The previous equation may be written in a more compact way as follows,
6=Q"'D(-4a)=R(-1a) (3.51)
The Q matrix was previously defined in the last point concerning the back-Euler return algorithm.

To remain on the yielding surface, f , should be zero. Hence,
f =a'6-Ad=a"Ré—1a"Ra-A'1=0 (3.52)
Using (3.52) in (3.50) we finally obtain the tangent consistent modular matrix D,

=D ¢=|R-
e ( a’Ra+A'

3.7.2 Consistent spatial tangent modulus

In the context of a spatial (Updated) large strain Finite Element formulation becomes necessary
the definition of a spatial tangent modulus.

According to Neto (2008), the global spatial tangent consistent stiffness matrix is given by

nelem
Ky =3 [G,aG av (3.54)

e=1l y

With, G, being the discrete spatial gradient operator which for the plane strain/stress analysis

has the following format

(3.55)

And, a, is the matrix form (Voigt notation) of the fourth order consistent spatial tangent modulus

a;y , defined by the cartesian components:

L F,,—0,0, (3.56)
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3.7.3 Von Mises yield criteria

3.7.3.1 Introduction

The Von Mises is one of most simple and well known yielding criteria, yet capable of reproducing
the behaviour of many materials. As such, the fundamentals of this criterion will be further
explained here. The comparisons that will be performed in following chapters will also be based

on this criterion.

2="do

=0 (PLASTIC)

"

2

Figure 3.9 - Von Mises yielding criteria

Geometrically it may be defined as a cylinder in the space of principal stresses, {0,,0,,0,},

whose axis is the hydrostatic line (0, = 0, = 0;) (Figure 3.9)

flo.k)=0,-A(,)=0 (3.57)

\Where , 0, , is the effective stress and A(Ep) is the hardening function of the material.

The effective stress O, is obtained as a function of the second invariant of the deviatoric stress

tensor, J, , translated by the following equations

1 (3.58)
o, =4/3J, with J, = sfy +§(s§ +s§ +52)
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The plastic flow vector, a, is given by

5. .25, ) (3.59)

xy*Yz

aE(Sx’ y

,being 5. ,5 2sw,sZ the components of the deviatory stress tensor.

y 9
3.7.3.2 Von Mises consistent tangent modulus

oa
The matrix, 8_ , for the Von Mises criterion assumes this simple explicit form Crisfield (1997):

c
2 -1 0 -1 (3.60)
-1 2 0 -1
%:_1 —LaaTz—1 A—LaaT
o6 20,0 0 6 0| o, 20, o,
-1 -1 0 2
Remembering that,
da (3.61)
Q=|I+AAD—
Jo
And,
R=Q'D (3.62)

We finally obtain the consistent tangent modulus , D, ,from
D, =|R-————o
a Ra+A

This operator enhances the convergence capabilities of the Newton-Raphson algorithm, when
comparing to the standard tangent modulus, D, , due to the consistence with the way the rate

equations are integrated.

Chapter 3. Finite Element Method 3.22



3.8 Dynamic analysis (Time integration)
3.8.1 Introduction

When dealing with problems that vary in time (dynamic problems), besides the spatial integration
of the equilibrium equations, it is necessary to integrate in time. As seen before, there are many
ways to achieve this. In the following points some different time integration techniques will be

explored and compared.

3.8.2 Implicit and explicit time integration

When integrating the equations of motion we can distinguish two main approaches, the explicit

and the implicit integration schemes.

The explicit methods use the differential equation at time “¢” to predict the solution at time

“t+At”. This way the response of the system at “r+ Ar” is “explicitly” obtained from the

response at “¢”.

This procedure has the big advantage of not involving a solution of a set of linear equations for
each time step. The weakness of this strategy lays on the fact the size of the time step that
guarantees the stability of the solution has to be very small. Nevertheless, when solving real
problems that involve a huge number of degrees of freedom this technique is often the only one

that can solve the problem.

The implicit methods attempt to satisfy the differential equation at time “¢” from the solution of
t — At . This method implies the solution of a set of linear equations for each time step which can,

in same cases, be a major disadvantage. However, in should be emphasized here that

considerably larger time steps might be used being some implicit methods unconditionally stable.

As a final remark we cannot say that one method is unconditionally better than the other. The
choice for each one of the preceding methods will heavily depend of the type and size problem

that has to be solved.

Chapter 3. Finite Element Method 3.23



3.8.2.1 Newmark based implicit Methods

It was the year of 1959 when Newmark (1959) presented the world a family of single-step
integration methods oriented for the solution of dynamic problems, such as the ones involved in
blast and seismic loading. From that moment on, several other fields applied these methods

successfully, having some improvements been added by many researchers.

The fundamental linear dynamical equilibrium equation is given by

Mii, +Ci, +Ku, =F, (3.64)

, where M is the mass matrix, C is the damping matrix, K is the linear stiffness matrix and

finally F, .is the external force vector at instant, 7.

The kinematical entities, U,, u, and u, represent the acceleration, velocity and displacement

vectors at instant 7.
If we write the displacement and velocity equations using Taylor expansions, we obtain

1? At ... (3.65)

u =u,_, + At l.lt—Ar + 2 ijr—At + 6 u_, +-

) (3.66)

u, =u_, +Ara, , + > u,_,, +

Newmark used a truncated version of the previous equations written in the following form

. £ AP .. (3.67)
=u,_, +Ara,_, + i, +4 u,_y
2 6
. . 2 (3.68)
=0, +Ard,_, +7 > u,_

u,

u,
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If the acceleration is assumed to be linear within the time step, the following relation may be

established:
i = u, —u,_, (3.69)
t
At

Therefore, If the preceding equation is substituted into equations 3.4 and 3.5, we obtain the

Newmark equations in standard form

1 , , (3.70)
u =u,_, +Aru, , + (5 - ,BJAt i, +fBAr i,

u, =u,_, +({1-y)Arii,_, +yAti, (3.71)

t

The previous equations were used by Newmark iteratively, for each time step, for each

displacement degree of freedom.

Depending on the values adopted for the parameters ¥ and [, different methods can be

developed.

/4 yi] Integrating methods

1 1 , , iy L
E Z Average acceleration (or trapezoidal rule) Unconditionally stable Implicit
1 1 , . . .
E g Linear acceleration Conditionally stable Implicit
1 1 . " .
5 E Fox-Goodwin Conditionally stable Implicit
1 , » -
E 0 | Central difference conditionally stable Explicit
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Its was in 1962 that Wilson (1962) formulated the Newmark method in matrix notation, adding

stiffness and mass proportional damping and eliminating the need for iteration by introducing

direct solution of equations at each time step.

| 1. 1 i} (3.72)
u, = ,BAIZ (ur _ur—Ar)_E u,_ — E_l u,_
3.73)
Y anp y (
ur:_(ut_ut—Ar)_ —-1 ur—At_At "o
Pt B 25
Writing the above equations in compact format,
ﬁt =4 (ur _ur—At)_az ur—At —a ﬁr—At (3.74)
lir =q (ut _ur—At)_ a, ]:lr—At —ds ijt—Ar (3.75)
The constants a, to a, are shown on the following table.
1 ¥ 1
0 2 G 2T o
PAt PAt LAt
1 /4 4
a,=—~-1 a,=—-— a; =At| ——
© 2B B 5 Lﬁ }
ag=AM(1-y) | a; =yt
For the average acceleration method (¥ =1/2 and S =1/4) the above constants will be
a, = 4 a, = 2 a, = 4
° AP LA At
a, =1 a, = as =0
0 = At g At
) T2
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The linear equation of motion can be rewritten using equations (3.9) and (3.10) allowing the

displacement at instant 7 to be obtained from the unknown displacements, u, .

(@, M+4a,C+K)u, =F, + (3.76)

M(ao u_, ta,u,_, +a, ur—At)+ C(al u_ ta,u,_, +as ur—Ar)

Organizing the equation differently, we finally arrive to

_eff g7
Keﬂ u, = Fr (3 )
With,
Freﬁ. =F + M(ao u_, ta,u, , +a )+ C(a1 u,_, +ta, 0, +da; ijr—At) (3.78)
And
K, =qM+aq C+K (38.79)

1 1
The method is conditionally stable if ¥ 2 5 , ,6’ <— and Ar < ,
14
w — —
max 2 ﬂ

being w, . the maximum frequency of the structure.

The Newmark method is unconditionally stable if

25> 72% (3.80)
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If the analysis is to be performed incrementally, (e.g. using a Newton-Raphson solution
algorithm), the equation (3.13) can be rearranged using the following relation

u, =u,_, +Au, (3.81)
(a,M+a,C+K, )JAu, =F, +M(a, u,_,, +a, ii,_,)+Cla, 0, +as i, )-Ku,_, (382
Organizing the equation differently, we finally arrive to

Kfﬂ Au, = F,"ﬁ —FTI'” =-R, (3.83)
With,

F¥ =F +M(a,u, ,, +a,ii,_, )+Cla, 0, +a,ii,_,) (3.84)
F"=K,u,,=[Bcav (3.85)

1%
Keﬁ =aM+a C+K, (3.86)

The linear system of equations (3.83) allows the displacement at instant ¢ to be obtained from

the unknown incremental displacements, Au, .
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The flowchart associated with incremental Newmark implicit time integration algorithm is

presented below

Input all Data

Initializes variables

Loop over time steps

Iteration Loop to clear residual

[ Ssorerance

Computes the consistent tangent stiffness matrix
K

A A J

Computes the effective consistent tangent stiffness matrix
K., =K, +aM+aC

|

Computes the effective load vector
F7 =F, +M(0, u,, +a, 6, €l v,y +as6,,)

A A J

Computes iterative displacement

iter

du, =K s F7

|

Computes incremental displacement
du, =du, +du;"

A A J

Updates total deformation gradient
F,=F, AF,_,(du,)

|

Updates Kinematical entities

1c

a, =a, (“, Uy )_az U, —a i,y
U, =q (ur U )—a4 U, —asl,_
u, =u, +du,

Resets stresses and internal variables to the last converged values

O =0,
& =€,
g, =%

pinc on

A A l

Computes the correct stress level
(Return mapping algorithm)

|

Computes the internal forces
r=F< _F"
't 't

Outputs results
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3.8.3 Numerical example - Cantilever under gravity load

3.8.3.1 Analytical solution

Let us consider the following a cantilever beam with a distributed mass per unit of length,

Young modulus, E', and moment of inertia, I .

mg
T T T T S El
m, El g = m*
u(t)
(x)
L L

Figure 3. 10 — Cantilever under gravity load

Assuming that the gravity is going to be the only load, acting on the cantilever, the non

dimensional deformed shape function and derivatives are given by the expressions:

1 , 4 (3.87)
=— x*——x+1
) 3L4x 3Lx
, o4 5 4 (3.88)
=37 T3
(3.89)

” 4
@ (x)= sz

The problem can be reduced to a single degree of freedom problem (SDOF) using the

correspondent expressions Clough (1993) to obtain the equivalent SDOF properties.

m' = jOLm(x) - o(x)dx (3.90)
k= J'OL El(x)-¢"(x)’dx (3.91)
¢ =a,[ EI(x)-¢"(x)dx (3.92)

(3.93)

P =] px.n)- pladx
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Hence, we obtain

m*zﬁﬁL
405
k*:16ESI
5L
. 16EI
=a, 5
5L
*—6_L.m.
P 15 g

The natural frequency of the system is given by
Hence, we obtain

. /k* /162E1
w = e Pp——y
m 13mL

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

If the gravity load is to be applied suddenly, the response of the system is ruled by the differential

equation of the dynamic equilibrium,
mi(t)+c u(t)+k’u(t)y=p

The response of the SDOF system is given by,

u(t) = ’]Z 1-e7%" cos(wr)]

%

The undamped response (¢ = 0) the SDOF system is given by,

u(t) = i i - cos(wn)]

(3.99)

(3.100)

(3.101)
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3.8.3.2 Numerical solution

Let us consider the following cantilever under sudden gravity load (Figure 3.11).

0,28 |

2,78

Figure 3.11 Cantilever under sudden gravity load — FEM mesh

The parameters used are summarized on the following table.

Case

Elem

E [MPa]

v [1]

v [kN/m®]

Material and Kinematical model

At [s]

FEM |

10

100

0.0

25.0

Large strain hyperelastic (Hencky)

0.001

In the (Figure 3. 12) we can see the response of the system in terms of vertical displacement of

the tip node.

-0.100 4

-0.200 4

-0.300 -

u(t) [m]

-0.400 -

-0.500 -

——u(t) m (Analytical) Num
—#—Fem_2D_NL (10 Elem) LS

-0.600

t(s)

Figure 3. 12 Cantilever under sudden gravity load — Tip displacement FEM & Analytical
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4 DISCRETE ELEMENT METHOD

Chapter 4. Discrete element method
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4 Discrete element method

4.1 Introduction

In the last years many different approaches were developed, having the common goal of

modelling the physical behaviour of dynamical problems as accurately as possible.

The Discrete Element Method uses simple shaped elements (discs and spheres) to model the
physical behaviour of granular and solid materials. Although issues related with contact tend to
restrain researchers from moving in that direction, elements with more complex geometry may be
adopted Mustoe (2000).

These elements (discrete elements) can be rigid or deformable depending on the problem to be

analyzed.

When deformable elements are adopted, the Finite Element Method can be used to model the
behaviour at element level and the Discrete Element Method to Model the evolution in time and

the contact detection.

The analysis relies on three fundamental computational steps. The first one is the contact
detection, where the possible contacts between each element and other elements or boundaries
are evaluated. The second step involves the contact force evaluation between colliding elements
or boundaries. The third and last step is the integration of the equations of motion, where the new
values for displacements and velocities of each element are evaluated from the information of the

previous time step.

A long way has been run done since the first works of Cundall (1978) with new and enhanced

interaction models and contact detection algorithms coming up every day.
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4.2 DEM Algorithm

With the objective of giving an overview of the most important steps associated with a typical

Discrete Element Method problem, the typical flowchart associated is show in Figure 4.1.

Begin

Input all Data

Initializes regions

Loop over time steps

Updates the region list

Updates (for each element)
- Position u
- Velocity v

Search for contact between:
- Elements
- Elements and boundaries

Outputs results

End

Figure 4.1 Typical flowchart for a Discrete Element Problem

From the flow-chart above it should be underlined that the most CPU absorbing procedure is
without any doubt the search for contact between elements. This matter will be addressed further

along this chapter.
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4.3 Governing equations

The governing equations of the motion of each element of the discrete system derive from

Newton’s second law.

M

G

Figure 4.2 Dynamic forces acting on a particle element

Hence, to guarantee the dynamic equilibrium of a particle (element) at a certain time step, the

following conditions must be satisfied

mi(r) = ZFX “1)
my(t)=Y F, (4.2)
1,6()=>'M, (4.3)

Where, m , is the mass of element and, [, is mass moment of inertia of the element.

The quantities z F, and z Fy represent the total forces acting on the element while ZMG

is the total moment in turn of the centroid.
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4.4 Integration in time

The three differential equations shown in point 4.3 must be integrated to obtain evolution in time

of the discrete system constituted by the set of discrete elements.

There are many different techniques to numerically integrate differential equations in time, in

space and in time and space. Nevertheless, they can be divided into two main groups:

» Implicit Methods
= Explicit Methods

The fist group includes strategies like the Runge-kutta (Backward Euler) and Newmark, while
within the second group it can be mentioned the Forward Euler integration and Leapfrog

integration.

The major advantage of the implicit methods is the better convergence features these techniques
usually have to offer. The major drawback comes from the fact that for large systems the solution
of the linear system of equations involved becomes too heavy, in what concerns memory and
CPU needs.

The explicit methods are exempted of the solution of a set of linear equations. This would grant
them increased speed, when compared with the implicit methods. This favourable effect is,
somehow, reduced by the need of smaller time steps in order to assure the stability of the

analysis.

Most Discrete Element Method problems often involve a very large number of elements.

Therefore, the Explicit Methods are usually more attractive within this context.
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4.4.1 Leapfrog integration

Considering the Leapfrog central difference scheme, the position angular velocity and

acceleration of each element can be updated in an asynchronous fashion as follows

U Uy Us Us
| . | ) | X |
u u u
| 2 o ‘{2 L 52 |
| T T |
\ | \ | \ | \
to e Y tap 1o tsp 13
At ‘
At
Considering the following approximation for the second derivative
e (4.4)
u( ) _u< >
" =
At

, and substituting equation (4.4) into equation (4.1) we can get an expression to update the linear
velocity of the element.

u =u ? +

! Y 4.5)
(n+— n—— (
. +2) (=) ;

M

In a similar way, the position of the element will be given by

1 el (4.6)
u™ =u" 4 At

Analogously, the expressions to update the angular velocity and position can also be found

1 1 4.7
9<n+5) _ e.(n—a) N ZMG As (4.7)

G

.(n+l) (48)
0" =60 +0 At
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4.4.2 Time step definition

4.4.2.1 Introduction

The definition of the appropriate time step, At, is essential when using explicit methods to

integrate the equations of motion.

One popular concept used within this context is the critical time step, 7., . When using a Leap-

frog scheme this is be given by

T, :i with  w, = \/z (4.9)
W, m

To assure unconditional convergence the following relation must be observed.

At <T. (4.10)

Cundall (1978) suggested that the effective time step should be a fraction of the critical time.

Some other authors advance 10% as the recommended time step for certain types of problems.
At< B-Ar,  with 0.10< 4<0.20 (4.11)

The accumulated experience of many researchers has shown that the definition of the

appropriate time step is, in most cases, problem dependant.
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4.4.2.2 System stability
The total energy of a particle at a certain time step, excluding damping and friction, is given by,

E, =lmvz+1102+mgh+lkn52 (4.12)
2 2 2

, where m is the mass of the particle, v is the translational velocity , I is the mass moment of

inertia with respect to gravity centre, @ is the rotational (angular) velocity, g is the gravitational

acceleration, k, is the contact normal stiffness and ¢ is the penetration between particles.

The stability of the integration method can be assessed monitoring the evolution of numerical

value of the total energy, E, , along several time steps.

Let us consider the following box, containing 12 discs with various sizes and equal elastic and

volumetric properties. All the particles are subjected only to the gravity force.

In order to assess the sensibility of the integration algorithm, three different time step sizes were
used.

Disc | R[m] | Weight [kN/m°] | Kn [kN/m] Friction

.Q ® 1 [0.100 75.0 6000 0.0

2 [0075 75.0 6000 0.0

. °©® _1 3 |0.050 75.0 6000 0.0

2om — 4 [0.085 75.0 6000 0.0
. o @ : 5 |0.035 75.0 6000 0.0

Q . . Test At [s] t_max [s] No. time steps
1 0.000500 4.0 8000

2 0.000250 4.0 16000

3 0.000125 4.0 32000

10m

Figure 4.3 Test box geometry and material properties
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The following graph (Figure 4.4) illustrates the response of the system for two different time step

sizes.
14.00 A
12.00
fﬂ . —— L —— et et ]
R [EERERRE
10.00 4
——1=0.00050 s 4
T —=—1=0.00025 s 1]
z: 8.00 ——1=0.00125 s -
o
2 .O @ N
E @ceo T
2 6.00 i
®c e | |
4.00
2.00 T
0.00 e

000 025 050 075 100 125 150 175 200 225 250 275 3.00 325 350 375 4.00
t[s]

Figure 4.4 Stability of the total energy of the test box

It can be observed that the stability is clearly enhanced when a smaller time step is chosen.

11.80

——1=0.00050 s
11.70 —=—1=0.00025s | |
——1=0.00125 s

11.60

11.50 +

Total Energy [N.m]

11.40 1

11.30 +

11.20
0.25 0.50 0.75

t[s]

Figure 4.5 Stability of the total energy of the test box. Detail
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4.5 Contact detection

One of the most important operations within the context of the discrete element system is the

detection of the contact between elements or between elements and boundaries.
Although some problems involve a large number of boundaries, in the majority of the cases, the
most expensive operation, in what concerns the computational efficiency, is the detection of the

contact between elements.

If the contact search is extended to all elements, the number of operations needed increases with

the following rate:

N operations = N'(N - 1) (4.13)

, where N represents the number of elements involved in the analysis.

This means that, for problems involving large number of elements, the computational time

increases proportionally to N*.

Along the years, many strategies were developed to effectively reduce the growth rate of the

number of operations needed to detect the contact between elements.

One of the most popular algorithms employed to reduce the number of operations needed to
detect the contact is NBS contact detection algorithm Munjiza (1998).

In the following point, another one of these strategies, proposed by the author of this work, will be
explained and detailed.
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4.5.1 Sub-division algorithm

This technique consists in the division of the envelope of the problem’s domain into many sub-

domains or regions (Figure 4.6).

| |
\ | 8
| |
| |
\ |7
\OO OOO‘
L 0020 SO0 -
O OO0 O 00O O ’ =
RS 0000 oo R ¢ VO
| SIS SERTIa QOO R | &
0 O00H200522057 ' "000SHO0QS 000N 5000 5 ‘
| BRO0ER000ER2065 0008 SOOSSE09S5 0095500955 |
O0522000200H2200 0OOSE0COSHO0OSE000
o) OQOOOOQOOOO OOOOOOOOOOOO
RS R t S8
48 e

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.6 Contact detection zones

The second major step consists in finding which elements belong (or are intersected) by each

region.

Once this is done, the search for colliding elements will be restricted to the elements that belong

or cross each region in a specific instant of time (Figure 4.6).

Nevertheless, it should be emphasized at this point that the use of a large number of regions will

ultimately lead to an increase of the computational time.

This is related to two main factors, being the first one the amount of time needed to find which
elements belong to each region. The second drawback comes from the fact that as many regions
are adopted as many cases of elements that will belong to more than one region will occur
(darker discs in Figure 4.6).
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In certain geometries, the regions will cover several void areas. If information is provided on the
geometry of the void areas, the regions contained within can be excluded from the contact search
(Figure 4.7).

15 15
14 l R 14
13 13
12 l R 12
11 l R 11
10 10
9 ] Void Region iR R 9
8 l R 8
] Valid Region [ -
7 7
6 il R 6
5 Void area B ] 5
4 l R 4
3 l R 3
2 2
1 1
1234567 89101112131415 1234567 8 9101112131415

Figure 4.7 Zones with voids

Depending on the complexity of the geometry of the problem to be analyzed, it might be worthy
the definition of many different void regions. This way, it becomes possible to cover the portions
of the domain where there is no need for detection of collisions between elements.

In the above example (Figure 4.7) it can be observed that the void areas correspond to circa 63%

of the total area of the problem.
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In the (Figure 4.8) it can be seen a comparison between the performance of the subdivision

method and the full element search method for a simple problem.

3000

2750

2500

2250

2000

1750 4

1500 A

CPU Time [s]

1250 1 —&—Girid (15x15) regions

—®—No Grid

1000 +

750 1

500 A

250

0 200 400 600 800 1000 1200 1400 1600 1800 2000
No. Elements

Figure 4.8 Grid method performance

It should be emphasized that the performance of the grid sub-division will depend on various
factors related to the problem in question, such as the distribution of the elements over the

domain on each time step.

Nevertheless, the use of this technique will always lead to major savings of CPU (Central

Processing Unit) time, comparing with the full search approach.

Other techniques may be employed with the goal of taking advantage of the available information
about the elements surrounding a certain element. Example of this is the cluster approach often

used when modelling solid structures with Discrete elements.
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4.5.2 Contact forces between elements

The contact between two circular elements (discs) can be determined from the following relations
Nazeri (2001):

Y
Figure 4.9 Contact between two elements

d= \/(xj — xl.)2 + (yj — yl.)2 - Distance between the centroids of the elements (4.14)
6=d-R —R, - Penetration between elements (4.15)

x. —x.)a =) . (4.16)
A= @, y ’)i + 0, y i) J - Vector normal to the contact surface
. == y) . (X =x) 4 (4.17)
§= yjd Y i +( ! ) Jj - Vector tangential to the contact surface
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The velocity of each element in the contact point, P, is given by

(4.18)

<
-
1]
|
+
=y
X

(4.19)

<
-
Il
<
+
sy
X
il

, Where the entities, 7., and Fj , are the position vectors of the contact point, relating to centroid

of the elements iand j.

Hence, the relative velocity between the two elements is

”rP = \7; _\7[{ (4.20)

The projections of the relative velocity in the normal and tangential direction are given by
5= -v7)-a)a (4.21)
(4.22)

These quantities will play an important role in the quantification of the friction forces between

particles and between particles and the boundary.
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4.5.3 Contact forces between element and boundary

The contact between a circular element (disc) and the boundary can be defined as following

Nazeri (2001):

Figure 4.10 Contact between one element and the boundary

dx =(x, —x,) - Horizontal projection of the boundary line (4.23)
dy=(y,—y,) - Vertical projection of the boundary line (4.24)
d =+/dx* +dy* - Length of the boundary line (4.25)
dl = ‘sx(xp - X, )+ sy(yp - )‘ - Distance from the centroid to the boundary (4.26)
0=dl—-R, - Penetration in the boundary (4.27)
~ —dy'.\ dx 4

n= 71 +7] - Vector normal to the boundary (4.28)
.~ dxs dy 4

s = 71 + 7 - Vector tangent to the boundary (4.29)
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The detection of the relative position of the intersection point between the element and the

boundary is performed through the parameter A .

42 dxCx = x) +dy(y, = y) (4.30)

d2

If 0 < A <1 then the element is colliding with the boundary segment defined by the nodes

(x;, ) and (x,,y,).
It should be noticed there are two special cases that deserve special attention.

When A approaches 0 or 1 (Collision with the extreme points of the boundary) a numerical

problem arouses when computing the normal vector and the tangential vector.

To avoid this, virtual circle with a radius equal to 0.001- R, should be assumed to exist at each

extreme of the boundary line (Figure 4.10). This way, the contact with the boundary line edge will

be transformed into a contact between the real element and an artificial element of small radius.

The velocity of each the element in the contact point with boundary, P, is given by

W, X T, (4.31)

p i

<
I
<I

(4.32)

<
Sl

Il
w-<l

, Where ., is the position vector of the contact point relating to centroid of element i .In this case,

v, is the velocity vector of the boundary line.

Hence, the relative velocity between the element and the boundary is

P (4.33)

i = (0 -v7)-a)a (434)
i = -v7)-5)-5 (4.35)
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4.6 Contact forces

The contact forces between two particles or between a particle and the boundary can be
determined accordingly to the following spring and dashpot model Nazeri (2001).

Figure 4.11 Contact forces model

These contact forces can be divided into its normal and tangential (shear) components (Figure
4.12). This division is justified by the fact that the material behaviour in the normal direction is
often distinct from the one observed in the shear direction.

X

Figure 4.12 Contact forces between elements
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4.6.1 Normal contact forces

The normal component of the elastic contact force F,,, can be obtained from the spring model

approach.
In this model it is assumed that the elastic force will be proportional to the penetration, o,

between the elements (or between the element and the boundary) and the stiffness of the

contacting surfaces.

F =k o (4.36)

4.6.1.1 Linear spring model (Hooke model)

One of the simplest ones is the linear spring model.

k, = F(Material) (4.37)

n

4.6.1.2 Hertz nonlinear spring model

Other classical model is provided by the Hertz theory that is based on the assumption of elasticity

in the contact between elements.

Hence, the parameter k, can be defined, accordingly as

- AEE,r'? (4.38)
"3E -0 )+ B, -0

Where, E|, E,,v, ,0, are the elastic properties of the contacting elements and r is a function of

curvature of the contacting bodies.
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4.6.1.3 Normal Damping forces

The inelastic part of the contact forces between elements (or element and boundary) can be
modelled with a dashpot model.

The viscous damping force in the normal direction can be computed from.

F=C3"° (4.39)
, Where, 4 ’is the normal component of the relative velocity between elements, given by
8 =67 -v7)-n)a (4.40)

The damping coefficient in the normal direction C, can be evaluated from the critical damping

coefficient, C,, introduced by Cundall (1974) and Taylor (1989).

4.41
C — 2 mlmzkn ( )
¢ m, +m,

Accordingly to Mustoe and Huttelmaier (1992), the viscous damping between two elements can

be given by

(4.42)

, Where e is the restitution factor.

In case of collision with boundary the same coefficient is given by
1 mk (4.43)
C, = 211{_) — 1m0

Riakel
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4.6.2 Shear contact forces

The tangential (shear) component of the elastic contact force F,, can be quantified in many

different ways, depending on the friction models adopted.

4.6.2.1 Coulomb friction model

According to this model the value of the friction force is given by
F =k, (4.44)

, Where, k, is the shear stiffness and 5, is the shear displacement between the elements in

contact or between the element and the boundary.

—

The value of |F,| cannot be higher than the slip friction force,

Ij“,s””‘ . When this happens the two

—

F,

discs will simply slip relative to each other and the force will be kept equal Ij“,s””‘ .

—

F

n

= (4.45)

7~ Slip
F,

i

, Where 1 is the friction between the contacting surfaces.

Figure 4.13 Friction contact force
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4.7 Examples
4.7.1 Hopper feeder
4.7.1.1 Introduction

This example exemplifies a gravity flow a set of 1040 elements of multiple sizes through a hopper
feeder with the following shape (Figure 4.14). The boundaries of the problem were defined with

the help of 13 lines.

Materialz

—
—
—

5

Figure 4.14 Flow through a hopper feeder

Two situations were analyzed, corresponding to different values of the friction between particles.

4.7.1.2 Material properties

The properties considered for each type of particle element for both simulations are summarized
in the following table.

Type Radius [m] Weight [kN/m?] e (restitution) [1] Friction [1] Kit=Kn [kN/m]
1 0.050 77.0 0.30 0.0 5000
2 0.045 77.0 0.30 0.0 5000
Case | 3 0.040 77.0 0.30 0.0 5000
4 0.035 77.0 0.30 0.0 5000
5 0.030 77.0 0.30 0.0 5000
1 0.050 77.0 0.30 0.50 5000
2 0.045 77.0 0.30 0.50 5000
Case Il 3 0.040 77.0 0.30 0.50 5000
4 0.035 77.0 0.30 0.50 5000
5 0.030 77.0 0.30 0.50 5000
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4.7.1.3 Geometry definition

The domain was divided in one hundred and five regions with two distinct void areas (Figure
4.15).

10,50 |

(525 0.0)

3,50 3,50 ‘ 3,50 i

Figure 4.15 Flow through a hopper feeder. Regions and voids [m]

Resulting from considering the void areas, the final number of regions to be scanned for inter-

element collision is reduced to eighty one.
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4.7.1.4 Results

In the following pictures the results for different time steps are shown. The color of each particle is
a function of its original vertical coordinate. This way, the mixing between particles can be easily
monitored.

(1=0.0) (1=0.50)

t=0.50 s

t=2.00 s

t=21.00 s

Figure 4.16 Flow at different time steps
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The following images show the effect of the friction between particles in the final layout of the two
set of elements.

Ay
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Figure 4.17 Detail of final layout of particles

In the following chart we can see the evolution of the total energy of the system along the flow
through the feeder.
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Figure 4.18 Flow through a hopper feeder — Total energy

The noticeably quicker conversion of the kinetic energy back to potential energy is evident in the
frictionless model, due to the easier flow of the particles through the feeder
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4.7.2 “U” Channel flow

This example tries to model the flow of a fluid through a set of 1000 particles of multiple sizes

trough a “U” shaped channel (Figure 4.19).
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Figure 4.19 Flow through a “U” channel [m]

Two simulations were performed. The first one (Case ) corresponds to a frictionless flow of
particles whereas the second one (Case ll) to a flow of particles with high friction. In both cases

some damping was considered.
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4.7.2.1 Material properties

The properties considered for each type of particle element in the two simulations are
summarized in the following tables.

Type Radius [m] Weight [kN/m?] e (restitution) [1] Friction [1] Kit=Kn [kN/m]
1 0.060 255.0 0.50 0.0 2500
2 0.070 255.0 0.50 0.0 2500
Case | 3 0.080 255.0 0.50 0.0 2500
4 0.090 255.0 0.50 0.0 2500
5 0.100 255.0 0.50 0.0 2500
1 0.060 255.0 0.50 0.50 2500
2 0.070 255.0 0.50 0.50 2500
Case |l 3 0.080 255.0 0.50 0.50 2500
4 0.090 255.0 0.50 0.50 2500
5 0.100 255.0 0.50 0.50 2500
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4.7.2.2 Geometry definition

The domain was divided into 225 regions as shown in Figure 4.20.
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Figure 4.20 Flow through a “U” channel. Regions and voids [m]

Resulting from considering the void areas, the final number of regions to be scanned for inter-

element collision is reduced to 82.
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4.7.2.3 Results

The following images illustrate some snap-shots of the particle flow inside the “U” channel for
both cases studied.
(u=0.0) (1=0.50)

t=0.80 s

t=1.00 s

t=1.40 s

t=2.40 s

Figure 4.21 Flow through a “U” channel — Results (I)

Chapter 4. Discrete element method 4.29



(u=0.0)

t=5.00 s

t=6.00 s
Figure 4.22 Flow through a “U” channel — Results (ll)

The effect of the inter-particle friction can be observed in the comparative results shown above in
pictures above.

The frictionless flow tends to cease after some seconds with the particle level being
approximately the same on both sides of the pipe. This is in accordance with the hydrostatic
equilibrium of a fluid.

For the high friction flow it can be observed the blockage effect created both by the friction
between the particles and by the friction between the particles and the boundaries.
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5 DISCRETE APPROACH OF THE CONTINUUM
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5 Discrete approach of continuum

5.1 Introduction

Being the discrete element method a numerical approach that has its roots in problems where the
term “continuum” surely does not seem to apply, in the recent years, many problems traditionally
belonging to the continuum mechanics field are being solved using discrete approaches Griffiths
(2001) and Tavarez (2006).

The seduction for the use of this strategy is far more intense when dealing with problems on
which there is a change of state involved. Example of these types of problems is the real
behaviour of a concrete structural member, where a physical separation occurs in the vicinity of
the cracked zones. This can assume vital relevance when simulating impact problems where

complete separation between members or regions is a reality.

As such, a proper comparison between the continuum mechanics solutions and the ones

obtained using a discrete element formulation urges to be performed.

This chapter tries to establish comparisons between the results obtained via finite element
method and discrete element method when modelling simple structural problems undergoing both

small and large strains.

Different strategies are proposed to model the behaviour of the continuum with discrete elements,

being emphasized the most relevant scaling parameters involved.

A model to simulate the material nonlinearity (plastic behaviour) is also suggested, accompanied

by comparative numerical examples.

In the last part of this chapter the potential performance of bonded discrete elements when

modelling crack path is tested against benchmark examples.
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5.2 Discrete modelling of continuum
5.2.1 Geometry

A simple approach to the problem can be to model the solid domain of the problem using clusters

of discrete elements with circular geometry bonded together with tensile springs.

Let us consider a domain fulfiled with discrete elements. The first step will be to detect the
elements in the proximity of each element in order to form a set of clusters of discrete elements (
Figure 5.1).

CLUSTERS

Figure 5.1 — Domain geometry. DEM Cluster definition

When detecting the elements surrounding each element, a tolerance must be defined, for
instance, as a function of the radius of the element (foler =R,+AR,).This procedure aims to

define the threshold between the elements that should be considered bonded or not with the

element in question.

It becomes evident that the size of each cluster will heavily depend on how compactly are the
DEM arranged.

While in problems where the particle size is constant, obtaining a closed packed assembly is
easy, when dealing with multi sized particle arrangements the same will not aplly.
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Let us consider a rectangular cell of discrete elements when subjected to an expansion or
contraction in the axial direction springs (Figure 5.2).

a) Initial mesh b) Contraction c) Expansion

Figure 5.2 — Square cell of discrete elements

The deformation of the cell can be modelled as follows.

The discrete elements will behave as discs when the distance between two elements decreases
and they collide and overlap (Figure 5.2 b).

When the distance between two elements is increasing, mobilizing tensile forces, they will bond
together due to the stiffness provided by springs (Figure 5.2 c). It is worth mentioning here that

these springs can be given linear or nonlinear material behaviour.

In order to preserve the original mass of the problem, a corrected volumetric weight, 7*, has to

be defined, to take into account the existing voids between discrete elements.

Generically, 7", will be given by

£ _ Yreal " VOlgens (6.1)

v

Nerem * Vol ELEM

If disc elements are to be used, we will have

« _ Yrea VOlgen (5.2)
2
Mgy 7 R

v

, where, R, is the radius of the each disc element used.
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5.2.2 Contact forces

5.2.2.1 Conceptual model

The most common way to model the contact forces between elements, in linear elastic behaviour,

is illustrated in (Figure 5.3).

S/

G

55

=< Y

Figure 5.3 — Contact forces between elements — conceptual model

The interaction between any two disk particles, belonging to a hexagonal cluster (Figure 5.1),

might be described as a virtual beam element of length, 2R .

Analogously to the Classical Beam Theory, Chandrupatla (1997), a local stiffness matrix, K, ,

can also be derived for each pair of bonded particles, Griffiths (2001).

k, 0O 0 -k 0
k, k.;r 0 -k k.r
K o| 0 kr kr* 0 —kr ki’
Pk, 0 0 K, 0 5-3)
0 -k, —-kr O . —kr
| 0 kr ko’ 0 —kr ki’
55
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The interaction forces between the particles “i” and “j” in local coordinate system will be given by

F, =K, -d, (5.4)

Considering that, within the Discrete Element Method context, the interaction forces should be
given in the global coordinate system, the following conversion can be employed.

The entities referred above are given by

d,=T4d,

K,=T" K, T

The transformation matrix between the local and the global coordinate system, T, is given by

cos(a) —sin(x) 0 0 0 0
sin(@)  cos(a) 0 0 0, 0
T 0 1 0 0 0
|0 0 0 cos(@) —sin(@) 0 (5.7)
0 0 0 sin(e)  cos(a) 0
| 0 0 0 0 I

Using the relation s described before, we can obtain the global interaction forces between any

two particles:

FAN k,c® +k, s’ (k, —k, )sc —k.rs - (k"c2 +k,s’ )sc —(k, —k,)sc —k.rs 174,
F, k,s* +k,c? k,rc ~(k, =k, )sc —(k"s2+k&cz) k,rc d,
F, k.’ k,rs —k,rc k,r’ d,
F, k,c* +k,s’ (k, =k, )sc k.rs d, (5.8)
F Symm k,s* +k.c’ —k,rc dy
L Fe | | kr’ dg
=g o o
F, K, dg
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5.2.2.2 Parameter correspondence

From the preceding point becomes evident the need for the establishment of a scaling technique
between the parameters describing the elastic properties of the continua and their counterparts in

the discrete model.

According to Griffiths (2001), for plane strain problems, the shear and normal springs can be

related with a set of elastic properties defining of the continuum ( E and v ) as follows

P L E
"3 (1+v)(i-2v)
(5.9)
1 E(1-4v)
kg =——

V3 ([1+v)1-2v)

The damping, ¢, can be also defined as a function of the properties of the continuum or, from

experimental data.

More recently, other authors like Tavarez (2006), have proposed other alternative expressions for

plain strain problems.

1 E . E
k”:_3 1-v E= 1-v?
"\ s With (5.10)
L =) R
S 3 1—-v? (I—V)

These last two are independent of the radius of the element and provide very good results in

terms of displacements, for close packed assemblies of elements.
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5.3 Stress recovery

The stresses within the continuum can be approximated using similar technique to the one
involved in the traditional finite element approach. Hence, the internal stresses will be computed
from the displacement field, u, provided by the Discrete Element Method approach.

5.3.1 Virtual mesh generation

The first step consists in generating a virtual triangular finite element mesh whose nodes
correspond to the centres of each circle discrete element. Each three discrete elements will
generate one triangular finite element (Figure 5.4).

[\

/NONEERETNNINININININININ/NN
VAVAVAVAN

‘ Discrete element A Finite element = Gauss point

Figure 5.4 — Stress recovery. Triangle mesh definition

The stresses may then be computed at the Gauss points of the virtual finite elements in a similar
fashion to the one used within the context of FEM.

When generating the FE mesh, special care has to be employed to assure that the nodes

defining each element are oriented counter-clockwise.
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5.3.2 Stress computation

Let us consider the displacement field, u, provided by the DEM for a certain time step , ¢, The

correspondent stresses can be obtained depending on the strain measure adopted and material
model chosen.

For large strains, the kinematics is described from the deformation gradient, F .

If the Neo-Hookean hyperelastic material model is to be adopted, the following relation between

the deformation gradient and the Kirchoff stresses can be established
t=uB-I)+Aln (J)I with B=FF" and J = det(F) (5.11)

, with B being the left Cauchy-Green Tensor and , F, the deformation gradient defined in Chapter
2.

The real or Cauchy stresses, 6, can be obtained from the Kircchoff stresses

1 (5.12)
=T —
J
Considering the fact that the virtual mesh is made of three nodded triangles, the stresses will
computed at the gravity centre of the element, thus, the same location adopted by the one point
Gaussian integration rule.

Within the context of and explicit integration in time, the use of single Gauss point translates in
major advantages in terms of computational time.
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5.4 Plasticity
5.4.1 Introduction

The modelling of the material non linearity of the medium is of great interest for applicability of the
Discrete Element Method to real problems. As such, a simple procedure is presented here to

model the behaviour of the medium when undergoing stresses beyond the limits of elasticity.

5.4.2 Reduced stiffness spring model
5.4.2.1 Introduction

Let us recall the three discrete element patch from which each virtual finite element was

previously defined (Figure 5.4).

When, for a certain time step, ¢, , the effective stress, O

(4

, computed accordingly to the strategy

explained in point 5.3.2.2 lays above the yielding limit of the material, 0, its value is reduced to

0, (If no hardening is considered). All the remaining stresses are also scaled down.

As a consequence, the stiffness of the springs bonding the discrete elements surrounding the
virtual finite element will also have to be reduced.
The reduction of stiffness suffered by a spring connecting any pair of elements “i” and “j” is then

computed accordingly to:

Yield_factor .+ Yield_factor . (5.13)
node i node j
Kn . =Kn-
node ij 2
, where Kn is the normal stiffness of the spring linking nodei and node j and Yield factor is

node i

an non dimensional factor that measures the degree of yielding between nodei and node j
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5.4.2.2 Yield factor

The yield factor associated with each node, “i”, is computed from the average between all the

elements connected to it, as follows (Figure 5.5)

n_elem_node (5 1 4)
ZYield _factor

— J
Yield_factor =1.0 — /=
l n_elem_node

Figure 5.5 — Yield factor for a typical element
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5.5 Crack path
5.5.1 Introduction

The modelling of the physical material separation, usual preceded by cracking, is an essential

feature when trying to follow the behaviour of a brittle material.

Many different approaches have been proposed to detect the crack initiation and progression
including the ones based on a tensile force limit Donze (1997), Masuya (1994), Zubelewicz
(1987), Bolander (1997), Brara (2001), Mishra (2001) and Sawamoto (1998).

5.5.2 Crack modelling
5.5.2.1 Introduction

The crack formation and progression in this work was modelled based on the two main physical
entities. The detection of the crack initiation relies on the average tensile stress between

elements (Figure 5.6), whilst the crack progression is driven by the apparent strain and fracture

energy release, Gy (Figure 5.8).

7

Figure 5.6 — Stress computation

The average stress between two elements, for the purpose of crack initiation, detection can be
computed from:
F (5.15)
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When dealing with elements with different sizes the following procedure may be used instead
(Figure 5.7)

Figure 5.7 — Stress computation with different sized elements

In this case the average stress between elements will be given by the division of the interaction

force between elements by the average diameter of the elements.

F F (5.16)
o = n = n
n R +R, R +R
1 J J
2
2

The crack will initiate when the normal tensile stress, o , reaches the critical value, ¢ . The
n crit

crack progression or propagation will be then be ruled by the fracture energy diagram, G

5 CRIT

SCR\T SMAX

n n

Figure 5.8 — Crack propagation scheme
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5.6 Examples
5.6.1 Cantilever under gravity load
5.6.1.1 Analytical solution

Let us consider the following a cantilever beam with a distributed mass per unit of length, m ,

Young modulus, E, and moment of inertia, I .

mg
T T T T S El
m, El g = m*
u(t)
(x)
L L

Figure 5.9 — Cantilever under gravity load

The natural frequency of the system is given by

Hence, we obtain
. |k [162EI (5.17)
w = = = —
m 13mL

If the gravity load is to be applied suddenly, the response of the system is ruled by the differential
equation of the dynamic equilibrium,

mit)+cu@)+k'u@t)=p° (5.18)

As seen in Chapter 3, the response of the SDOF system is given by,

. (5.19)
u(t) = ’IZ 1-e7%" cos(wr)]

%

The undamped response (¢ = 0) the SDOF system is given by,

. (5.20)
u(t) = f _[1-cos(wn)]
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5.6.1.2 Numerical DEM & FEM solution

In order to assess the feasibility of the discrete element method in solving this problem both in
small and large strains, two sets of discrete elements and one mesh of eight nodded finite
elements were used to model the cantilever (Figure 5.10).
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w
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5
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N
a
o
4
N
5
[N
a
ES
>
0,28

2,78

m=>5832Kg/m

y=25kN/m’

1062 Discrete elements

40 Finite elements

Figure 5.10 - Cantilever under sudden gravity load -FEM & DEM Meshes

The gravity load was applied on each discrete element as a vertical force whose magnitude

comes from the area of each element times the volumetric weight.

Several numeric tests were conducted, starting with a sensibility analysis of the effect on the size
of the time step adopted.
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The following tables contain the relevant information on the numerical analysis performed, both

with Discrete element method and Finite element method.

Case Elem | E[MPa] | v[1] | y[kN/m Material and Kinematical model At [s]
FEM I 40 100 0.25 25.0 Large strain hyperelastic (Hencky) | 0.001
FEM II 40 40 0.25 25.0 Large strain hyperelastic (Hencky) | 0.001

Case Elem E [MPa] v [1] Kn [kN/m] | Ks [kN/m] RIml |y [kN/m® | At[s]
DEMI 1062 100 0.25 92376 100 0.0144 28.128 0.0001
DEM II 1062 40 0.25 36950 20 0.0144 28.128 0.0001

In the following graphs it can be

displacements and stresses.

-0.100 -

-0.200 -

-0.300 -

u(t) [m]

-0.400

-0.500 +

seen the response of the system for the case 1 in terms of

—+—u(t) m (Analytical) Num
—4—DEM_2D 1062 elem
—=—Fem_2D_NL (LS) 40 Elem

-0.600

t(s)

Figure 5.11 - Cantilever under gravity load (Case 1) — vertical displacement of Point A
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The evolution of the horizontal stress at point B (Figure 5.10) is translated by the following graphic.

4400.0

4000.0

3600.0

3200.0

—=—DEM_2D 1062 elem
—Fem_2D_NL (40 Elem) LS

2800.0

2400.0

1 2000.0
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1600.0

1200.0 A

800.0

400.0

0.0 T T T T T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4
t(s)

Figure 5.12 - Cantilever under gravity load (Case 1) — Horizontal stress at point B
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In the following pictures show the displacement of the tip node of the cantilever for load case 2.
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——Fem_2D_NL (10 Elem) LS
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Figure 5.13 - Cantilever under gravity load (Case 2) — horizontal displacement of Point B
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Figure 5.14 - Cantilever under gravity load (Case 2) — vertical displacement of Point B
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The evolution of the horizontal stress at point A (Figure 5.10) is translated by the following graphic.

3998.5

3498.5 4
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2998.5 —=—Dem_2D (738 Elem)
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1998.5

Sigma_x(t) [KPa]

1498.5
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0 0.5 1 1.5 2 25 3
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Figure 5.15 - Cantilever under gravity load (Case 2) — horizontal stresses at point B

Complementary, in the chart bellow, it can be appreciated the stability of the total energy of the

system, E, , given by:

n elem

2 1 2 1 2
E, =) —my +—16 +mgh +—k,.0, (5.21)
11
o 2 2 2
50
memmmmmm sessasas anun annnsnanssansas
40 4
@ 30 4
o
3
3 —=—Dem_2D (738 Elem K=23 MN/m)
§ »+ Dem_2D (81 Elem K=24 MN/m)
]
w 20
10 A
0 T T T T T
0 0.5 1 1.5 2 25 3

t[s]

7Figure 5.16 - Cantilever under gravity load (Case 2) — total energy
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5.6.2 Cantilever under sine tip load
5.6.2.1 Analytical solution

Let us consider the following a cantilever beam with a distributed mass per unit of length,

Young modulus, E, and moment of inertia, I .

Fo sin(wt)

El
m,El g = m

Figure 5.17 - Cantilever under sine tip load

Assuming that the tip load is going to be the only load, acting on the cantilever, the non

dimensional deformed shape function and derivatives are given by the expressions:

1 5 3 (5.22)
=X ——x+1
) 20 oot
roon 3 (5.23)
v ()= 20 oL
(5.24)

” 3
@ (x) :sz

Again, this problem can be reduced to a single degree of freedom problem (SDOF) using the

correspondent expressions Clough (1993) to obtain the equivalent SDOF properties.

m' = [ m(x)- p(x) dx (5.25)
k"= J'OL El(x)-¢"(x)’dx (5.26)
¢ =a,[ EI(x)-¢"(x)dx (5.27)

(5.28)

P =] px.n)- pladx
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Hence, we obtain

99 (5.29)
420
«_3EI (5.30)
K= 5
. 3EI (5.31)
c =aq B
p =F, sin(at) (5.32)

The natural frequency of the system is given by
Hence, we obtain

. [k [420EI (5:33)
W = % = —_—
m 33mL}

If the external force is a sine wave, the response of the system is ruled by the differential equation

of the dynamic equilibrium,

m'ii(t)+c u(t)+k u(t)=F, -sin(wt) (5.34)

The response of the SDOF system is given by,

F 1 (5.35)
u(t) =2 1—7? Jsin(wt) — 2&r cos(wit)
k |:1_r2 (2V§)Zj|[( ) 5 ]
w
r=—
w
c c
6= Cor  2mw
The undamped response (c* =(0) the SDOF system is given by,
(5.36)

u(t) = f 0 L ! 2} [sin(wr) — rsin(ar)]
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5.6.2.2 Numerical DEM & FEM solution

In order to test the capacity of the DEM to follow the response of a system with external forces
that vary in time, the same meshes were used to establish some comparisons.

‘ 2,78 ‘ m =583.2Kg/m

y=25kN/m’

F(t)=F,sin(wt) kN

1062 Discrete elements

F,=2kN

- w=12.0rad /s

40 Finite elements

Figure 5.18 - Cantilever under sine wave tip load -FEM & DEM Meshes

The following tables contain the relevant information on the numerical analysis performed with
Discrete element method.

Case Elem | E[MPa] | v[1] | Kn[kN/m] | Ks[kN/m] | R[m] | v [kN/m°] | At]s]
DEMI | 1062 100 0.25 92376 100 0.0144 | 28.128 | 0.0001

This other table contains the counterpart information on the numerical analysis performed with
Finite element method.

FEM Elem | E[MPa] | v[1] | y[kN/m% Material and Kinematical model At [s]
FEM | 40 100 0.25 25.0 Large strain hyperelastic (Hencky) | 0.001
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In the following graphic the good agreement between the analytical solution and the numerical
results for the vertical displacement of A, both for the FEM and DEM solutions, is evident.

0.150
——u(t) m (Analytical) Num
—a—DEM_2D 1062 elem
0.100 A ——Fem_2D_NL (LS) 40 Elem
0.050 1
E
= 0.000 1 ‘ ‘ ‘ ‘
5 13 14 15 16

-0.050 4

-0.100 4

-0.150
t(s)

Figure 5.19 - Cantilever under sine tip load — Vertical displacement of point A

The evolution of the horizontal stress at point B (Figure 5.20) is translated by the following graphic.

1000.0

600.0 -
€ 2000 |
g 2000
<
o I | 0.6 0. 1 12 1.4 16 3
£
S -200.0 1
"

—=— DEM_2D 1062 elem
-600.0 - ——Fem_2D_NL (LS) 40 Elem
-1000.0

t(s)

Figure 5.20 - Cantilever under sine tip load — Horizontal stress at point B
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5.6.3 Clamped beam
5.6.3.1 Problem definition

In order to assess the feasibility of the DEM model versus the FEM model, when modelling the
response of systems that undergoes simultaneously finite (large) deformations and plastic

behaviour, let us consider the following Clamped Beam.

< S ) 2 , ) ) )
<
o7 L« E=10MPa
pal <
< } 4 v=0.25 < @
e < Y=20 kN/m  * Q4 ” ;
< A <
T ’ .
Pl
1 2 4 4 N
1,5

Figure 5.21 — Clamped beam. Geometry and boundary conditions[m]

The picture (Figure 5.21) shows both the geometries and boundary conditions considered along

with the material properties.
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S| 1 @ o
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Loy ),( .\Hi

A (1.5;0.0)

1,5

Figure 5.22 — Clamped beam. Sampling points for stresses [m]

For the sake of clarity, the sampling points used to monitor de evolution of the internal stresses

are illustrated in (Figure 5.22).
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5.6.3.2 Numerical solution

The comparison with the results obtained with the discrete element method was made using a set
of discrete elements a eight nodded finite element mesh as shown below.

0,4

1,5

240 Finite elements (8 nodded)

0,4

1,5

1714 Discrete elements

Figure 5.23 — Clamped Beam. Meshes

The following tables contain the relevant information on the numerical analysis performed.

FEM Elem | E[MPa] | v[1] | y[kN/m’] | fyd [MPa Material and Kinematical model At [s]
FEM I 240 10 0.25 20.0 135 Large strain hyperelastic (Hencky) 0.001
FEMII 240 10 0.25 20.0 135 Large strain hyperplastic (Hencky) ¥ | 0.001

DEM | Elem | E[MPa] | v[1] | Kn[kN/m] | Ks [kN/m] | fy [MPa} | R[m] |y [kN/m%] | At[s]
DEMI | 1714 10 0.25 | 92336 0.25 135 | 0.0100 | 22.285 | 0.00010
DEMII | 1714 10 0.25 | 92336 0.25 135 | 0.0100 | 22.285 | 0.00010

4 Von Mises yielding criterion
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In the following graphics, the good agreement between DEM solution and the homologous results

from the FEM solution, both for hyperlelastic and hyperplastic model, is shown (Figure 5.24).
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Figure 5.24 Clamped beam. vertical displacement of point A
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Figure 5.25 Clamped beam. Total Energy
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The following charts show the evolution of internal stresses at point B and at point C.
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Figure 5.26 Clamped beam — Horizontal stress at point A
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Figure 5.27 Clamped beam — Shear stress at point C
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The response of the system obtained for the hyperplastic model at different time steps is

illustrated in following pictures.
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Figure 5.28 — Clamped beam - Comparative results
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5.6.4 “S” shape beam
5.6.4.1 Problem definition

In order to asses the feasibility of the DEM model versus the FEM model, when modelling the
response of systems that undergo finite (large) deformations, let us consider the following “S”

shaped structure clamped at one end and subjected to a suddenly applied gravity force.

E=40 MPa
v=0.25
Y=20 KN
a( %A _
<y € /o
ﬁ lg=9,81 ms
1,15 . 0% | 083 |

Figure 5.29 — “S” shape beam. Geometry and boundary conditions [m]

Two load cases were considered. In the first one the structure is considered to be elastic while in

the second load case elasto-plastic behaviour is assumed.

The picture (Figure 5.29) shows both the geometries and boundary conditions considered along

with the material properties.
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5.6.4.2 Numerical solution

The comparison with the results obtained with discrete element method was made using two

different sets of discrete elements a one finite element mesh as shown below.

0,59

SRS

S

1692 Discrete elements

Figure 5.30 — “S” shape. Meshes [m]

The following tables contain the relevant information on the numerical analysis performed.

FEM Elem | E[MPa] | v[1] Material and Kinematical model fy [MPa] | y[kN/m%] | At[s]
FEMI 60 40 0.25 Large strain hyperelastic (Hencky) 20.0 0.001
FEMII 60 40 0.25 | Large strain hyperplastic (Hencky) 2 135 20.0 0.001
DEM Elem | E[MPa] | v[1] | Kn[kN/m] | Ks [kN/m] | R[m] | fy [MPa] |y [kN/m°] | At[s]
DEMI | 1692 40 0.25 36950 0.0 0.0133 | 135000 22.593 0.0001
DEMII | 1692 40 0.25 36950 0.0 0.0133 135 22.593 0.0001
% Von Mises yielding criterion
5.30
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The response of the system obtained for load

pictures bellow.
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Analogously, the response of the system obtained for load case Il at different time steps

illustrated in the following pictures.
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Figure 5.32 — “S” shape. Load case Il. Comparative results
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In the following graphics, the good agreement between DEM solution and the homologous results

from the FEM solution is shown for load case |.

0.2

uy(t) [m]

——Dem_2D (1261 Elem) Von Mises
—Fem_2D_NL (60 Elem) Von Mises
-1.8 1 —=—Dem_2D (1261 Elem)
—Fem_2D_NL (60 Elem)

-2
t[s]
Figure 5.33 “S” shape. vertical displacement of point B
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Figure 5.34 - “S” shape. horizontal displacement of point B
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5.6.5 Notched beam

5.6.5.1 Problem definition

Let us consider the following beam with free supports subjected to two unsymmetrical point loads,
at a ratio of 1:10. This experiment is based on the experimental work developed by Schlangen
(1993) with the purpose of validating numerical modelling of crack paths.

~0.02~———————0.18 ~+-0.04—+ 0.18 ~0.02—

—_
o
o

1
1P

—_
—_

Figure 5.36 — Notched Beam — Experimental set-up and geometry [m]

The experimental results of the crack patterns obtained by Schlangen (1993) for both free and

fixed supports (friction between the load plates and the beam) can be seen in the following
pictures.

Figure 5.37 — Notched Beam — Experimental results for free (left) and fixed (right) supports
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5.6.5.2 Numerical solution

The following set of 3299 discrete elements was used to model the notched beam. In order to
capture the crack path development with more accuracy, a finer DEM mesh was used (elements
with smaller radius) in the area where the crack path was bound to happen.

0,02 0,18 0,04 0,18 0,02

10.0050 i

1
1P

—_

Figure 5.38 — Notched Beam. DEM set [m]

The properties used to carry out the numerical simulation are summarized in the following table

Mat | E[MPa] | v[1] | Kn[kN/m] | Ks[kN/m] | R[m] | fy[MPa] | y [kN/m°] | At[s]
1 10 0.25 10000 0.0 0.00250 | 135000 | 22.593
2 10 0.25 10000 0.0 0.00125 | 135000 | 22.593
0.0000125
3 10 0.25 10000 0.0 0.00080 | 135000 | 22.593
4 10 0.25 10000 0.0 0.00045 | 135000 | 22.593
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In the following pictures the crack path progression for different time steps can be observed along
with the experimental results for free supports.

DEM 3299 Elements with free supports

#(1)=000038 L(4)=000130

(17)=0.00638 #(20)=0.00750

2(23)=0.00863

Figure 5.39 — Notched beam — Crack path for free supports
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Nevertheless, alternative approaches should be explored to recover the stresses from each patch
of discrete elements in a way more consistent with the strategy employed to model the continua
using discrete elements. An example of this would be using a multi-scale based approach, where
the stresses would came from the resultant of the forces acting on the boundary of each patch
(cluster) of discrete elements.

The large strain modelling of bonded discrete elements, although yielding very promising results
still lacks some accuracy when modelling hyper-plastic behaviour. This may be improved by
using more sophisticated models to mimic the bond between each discrete element, such as

hyperelastic spring models.

The crack path modelling has proven to be one of the strong points favouring the use of discrete
element based techniques to model structural behaviour of structures that will exhibit brittle failure
after a certain level of tensile stress has been achieved. Some more development could be
achieved in the form of more sophisticated techniques to evaluate the average tensile stresses

from the knowledge of the interaction force between each pair of elements.

The overall conclusion is that the discrete element method is becoming an increasingly more
attractive way of modelling the continuum even considering the computational costs usually
associated with this technique. This trend gains momentum as the speed of the microprocessors
progresses exponentially. This is further enhanced by the fact the explicit time integration
schemes employed in discrete element method simulations can be easily parallelized and hence
allowing the use o multiple processors.
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